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Abstract

This paper provides evidence that rapid workforce aging has contributed
to slow productivity growth in the US over the last two decades, through its
impact on innovation. I document that workforce aging in local labor mar-
kets leads to a reduction in R&D employment and fewer inventions using an
instrumental variable strategy. Reductions in R&D employment are driven
by within-age group changes, rather than a composition effect driven by age-
specific R&D employment rates. This finding suggests that workforce aging
impacts innovation through a demand channel, i.e., younger workers have a
higher demand for inventions, rather than a supply channel operating, e.g.,
through the comparative advantage of young workers in innovation. Corrobo-
rating a strong demand channel of demographics, I also find that the workforce
aging of international trading partners leads to a reduction in local innovation.
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1 Introduction

The US workforce has aged significantly in recent decades, as have workforces in other
developed nations. Figure 1 plots the share of people aged 25–44 among those aged
25–64, a measure I refer to as Working Young Share (WYS), for the US population,
labor force, and employees. Between 1990 and 2010 the WYS for the US population
has decreased from 63% to 50% with similar declines in absolute terms for the labor
force and employees. The UN predicts the low WYS to persist in the medium to long-
run implying that the workforce of the future is significantly older than the workforce
of the past (Nations, 2019).

Figure 1: The US workforce aged rapidly since 1990
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Note: This figure shows the WYS for the US population, labor force
and employees based on the CPS ASEC samples. The WYS is defined
as the share of age 25-44 subjects among those aged 25-64.

Concurrently, productivity growth has slowed down considerably over the last two
decades (Syverson, 2017). Aghion et al. (2023) document that annual multifactor
productivity growth in the US has declined from 0.79% in the 1988-95 period to
0.37% in the 2006-19 period, while Andrews et al. (2016) show that the productivity
slowdown is a common phenomenon across developed nations. A growing literature
attempts to explain the slowdown in productivity growth, however, few papers have
explicitly linked it to demographics and workforce aging in particular (Teulings and
Baldwin, 2014; Jones, 2019).
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This paper presents evidence directly linking workforce aging to a reduction in
innovation activity, which is often considered the main driver of medium- and long-run
productivity growth (Romer, 1990). Following an instrumental variable approach, I
find that an aging workforce in a local labor market leads to lower R&D investment,
as measured by R&D employment, and fewer inventions, as measured by patents per
capita. My estimation strategy proposes to address potential endogeneity concerns
regarding changes in the local workforce age structure by leveraging historical birth-
rates to create variation of workforce age composition that is arguably exogenous to
subsequent changes in local labor market conditions.

Next, I investigate why workforce aging reduces innovation and find evidence
suggesting that it is mostly due to a demand, i.e., market size, channel. I decompose
changes in R&D employment rates into a within- and across-age group component,
and find that the former accounts for 89% of the overall effect of workforce aging on
R&D employment. Thus, workforce aging reduces R&D employment because fewer
workers of a given age work in R&D and not because there are fewer workers in
age groups with high R&D employment rates. This evidence is inconsistent with a
supply-side interpretation in which workforce aging leads to less innovation because
of young workers’ comparative advantage in R&D. In such a world, we would expect
the effect to be driven by the across age-group changes and might even see opposing
within-group changes that equalize demand and supply for R&D workers. In contrast,
the evidence is in line with a demand interpretation where young workers have more
demand for new technologies, e.g., as they adopt them more frequently or faster,
such that a larger share of young workers accelerates innovation due to a market size
channel. In such a world, we would expect the overall effect to be dominated by
within age-groups shifts in R&D employment rates, as I find empirically.

Finally, I provide additional, direct evidence for a demand-side channel by docu-
menting that innovation activity declines significantly in response to workforce aging
in export markets. Focusing on export markets mechanically shuts down any supply
channel and, thus, allows for direct investigation of workforce aging as a shifter in
the demand for innovation. Importantly, the documented link does not exists when
investigating workforce aging in import markets, which confirms that export linkages
do not capture trade connections in general, but sources of demand.
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Together this evidence suggest that workforce aging reduces innovation due to a
demand channel, which is qualitatively in line with an endogenous growth model with
costly technology adoption and overlapping generations. In the model, older workers
adopt fewer new technologies as they have less time remaining in the labor market to
benefit from human capital investments. Thus, an economy with an older workforce
has lower average technology adoption rates via a composition effect and, resultingly,
lower demand for new technologies. This lack of demand then reduces investments in
the creation of new technologies and, thus, productivity growth. Hence, economies
with an aging workforce have slower economic growth.

I provide two pieces of evidence in line with this mechanism. Firstly, I show that
older workers are slower to adopt new technologies using the rise of computers during
the 1990s as an example. Secondly, I show that local labor markets with a rising share
of young workers experience wage growth, but mostly so for young workers. This
finding is in line with the model described above as the new technologies developed
in light of a younger workforce raise the labor productivity for adopting workers,
which tend to be young on average.

Literature. This paper contributes to three lines of research. Firstly, I contribute
to the growing literature on the recent slowdown in US productivity growth by pro-
viding evidence in favor of workforce aging as a contributing factor. Syverson (2017)
documents a significant slowdown in productivity growth since at least 2005, while
Philippon and Gutiérrez (2017) documents a slow down in investment. A growing lit-
erature attributes this phenomenon to technology adoption lags (Brynjolfsson et al.,
2019) or slower innovation (Jones, 2019; Bloom et al., 2020; Akcigit and Ates, 2021;
Aghion et al., 2023; de Ridder, 2023; Liu et al., 2022). I complement the existing
work by providing evidence for labor force aging as a contributing channel through
its impact on innovation. This idea relates to the literature on firm dynamics and
demographics, which argues that slower labor force growth, which is closely linked to
aging, has contributed to declining firm dynamism (Hopenhayn et al., 2022; Karahan
et al., 2022; Engbom, 2019; Peters and Walsh, 2022). I complement their analysis by
providing evidence in favor of demand instead of supply-side factors as a core force
shaping the impact of workforce aging on innovation and economic dynamism.
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Secondly, the paper is closely related to the literature on the macroeconomic im-
pact of aging, which has primarily focused on public finances and aggregate savings
with three notable exceptions (Teulings and Baldwin, 2014; Eggertsson et al., 2019).
Firstly, Feyrer (2007) and Maestas et al. (2023) provide evidence that labor force
aging is associated with slower productivity growth at the state level.1 My evidence
suggests that this link can be partly explained by the impact of aging on innovation.
Secondly, Aksoy et al. (2019) study population aging in a general equilibrium frame-
work allowing for differential research productivity across age groups.2 My estimates
suggest that comparative advantage contributes little to the impact of workforce ag-
ing on innovation, which I find to be primarily driven by the demand-side. Finally,
Acemoglu and Restrepo (2022) argue that workforce aging is a key driver of the
current wave of automation and innovation therein. I complement their findings by
providing evidence on the link between aging and overall innovation in the US, and
by highlighting technology adoption as a potential underlying driving force.

Finally, I contribute to the literature connecting age to innovation and entrepreneur-
ship by highlighting the demand-side implication of workforce aging on innovation.
The literature documents that research and entrepreneurship productivity peaks
around age 40–50, which suggests that workforce aging should increase entrepreneur-
ship and R&D productivity (Jones, 2010; Jones and Weinberg, 2011; Ang and Madsen,
2015; Azoulay et al., 2020). In contrast, Derrien et al. (2023) find that local labor
markets with a higher share of young workers record higher patenting rates. I extend
this literature by, to the best of my knowledge, providing the first evidence on a
causal link between workforce aging and investments in R&D. I also show that aging
reduces innovation due to lower demand for new technology rather than comparative
advantage across age groups, which has been the focus of this literature.

Organization. Section 2 discusses the potential effect of workforce aging on inno-
vation. Section 3 introduces the data and empirical strategy followed by the results
in Section 4. Section 5 concludes.

1Irmen and Litina (2022) and Aiyar et al. (2016) find similar patterns in the European and OECD
context.

2Relatedly, Cai and Stoyanov (2016) and Gu and Stoyanov (2019) argue that young workers have
more recent skills and investigate the implications for industry specialization.
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2 Linking Aging to Innovation

There are at least two channels through which workforce aging might impact inno-
vation and, thereby, productivity growth.3 The first channel, which I refer to as a
supply channel, posits that young workers are more apt to innovate.4 Resultingly,
an economy with a younger workforce has a larger relative supply of workers with a
comparative advantage in innovation, which leads to a larger R&D sector as long as
the economy is willing to substitute production and innovation at the margin.

The second channel, which I refer to as a demand channel, arises when young
workers have a higher demand for inventions, i.e. the output of the innovation process
and R&D sector. Resultingly, a younger workforce increases the market for innovation
and potential profits thereof, which incentivizes firms to innovate more and leads to
an expansion of the R&D sector. This channel is commonly referred to as market
size effects in the growth literature (Jones, 1995).

One mechanism potentially giving young workers a higher demand for innovation
is technology adoption. Young workers might adopt new technologies faster for three
complementary reasons. First, they can reasonably expect to stay longer in the labor
market and, thus, have more time to benefit from any investment in human capital
through technology adoption. Secondly, young workers tend to have lower opportu-
nity costs as are yet to have well developed expertise, e.g., in older technologies, or
experience that pays them high wages.5 Finally, older workers might be more focused
on managerial tasks that rely less on technology and, therefore, be less likely to learn
about and use new technologies (Acemoglu and Restrepo, 2022). For example, a se-
nior software engineer might not need to learn about the latest developments in AI,
because they rely on their junior colleagues for implementation. Independently of
the particular channel, the literature finds that younger workers tend to adopt new
technologies, or abandon outdated ones, at a faster rate (Friedberg, 2003; Weinberg,
2004; Horton and Tambe, 2020).

3Romer (1990) and Aghion and Howitt (1992) first argued that innovation is the main driver of
long-run productivity growth. See, e.g., Kelly et al. (2021) for related evidence.

4The evidence on this assumption is mixed at best. For example, (Jones et al., 2014) and Azoulay
et al. (2020) find that research and entrepreneurship productivity, respectively, peaks in middle ages.

5For example, Lagakos et al. (2018) document rising wages over the life-cycle and attribute the
slope partly to human capital investments.
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Online Appendix C proposes an endogenous growth model with overlapping gen-
erations and costly technology adoption that gives rise to such a demand channel.
Older workers adopt fewer new technologies as they have less time in the labor mar-
ket to take advantage of them. Resultingly, an older economy features less technology
adoption, lower profits from innovation, and slower innovation-driven growth. Thus,
workforce aging may slow down innovation and economic growth in theory, however,
the extent to which it does in practice remains unclear.6 In the following, I investigate
this question empirically and find evidence for a strong demand channel.

3 Empirical Strategy

3.1 Data

My analysis links a range of data sources across time and space to investigate the
impact of workforce aging on local innovation. My unit of analysis are 1990 US
commuting zones (CZs) for decadal observations from 1980 to 2010 (Tolbert and
Sizer, 1996). CZs are consistent geographic areas that are designed to capture a local
labor market and are the standard geography considered in the literature on local
labor markets. (Autor and Dorn, 2013; Autor et al., 2013) Unless otherwise noted, I
map geographies to CZs using the crosswalk developed in Autor et al. (2013).

I construct employment- and population-based measures using the 1980, 1990,
and 2002 decadal Censuses and the 2010-12 3-year ACS from IPUMS (Ruggles et
al., 2020). I focus on full-time full-year (FTFY) workers, i.e., those reporting to have
worked at least 40 weeks last year with at least 35 hours per week, for all employment-
based measures following Acemoglu and Autor (2011). Occupations are measured
using the consistent occupational codes developed in Autor and Dorn (2013).

I complement this data with information on local patenting from Berkes (2018),
which is based on the USPTO’s PatentsView. I map patents to CZs via the inventor’s
county of residence and split the credit for a patent equally among its inventors. I
construct 5-year forward-citations via the patent citations file and define the technol-

6The model also highlights a potentially confounding channel: population growth. Faster popu-
lation growth implies more potential customers in the future and, thus, a larger value of innovation
today. Incidentally, faster population growth also implies a younger workforce. I discuss this chal-
lenge in the robustness section.
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ogy class of a patent as its primary CPC sub-section. Forward-citations are citations
received by a patent. As conventional in the literature, I record patents in their
application year. (Kogan et al., 2017; Terry et al., 2023)

I obtain births by county from 1900 onward from historical censuses, the NBER
Vitality Statistics, and the Surveillance, Epidemiology, and End Results (SEER)
program, and map them to CZs via Eckert et al. (2018) and Autor and Dorn (2013).7

Finally, I obtain local employment by industry from the 2010-12 County Business
Pattern and exports by industry in 2000 from the Census Foreign-Trade Statistics.
I average values across years to safeguard against year-to-year fluctuations. I also
obtain data on population size by age group by country from the UN database.

3.2 Measuring Local Innovation Activity

I create two measures of local innovation activity capturing innovation inputs and
outputs, respectively. First, I proxy for local investments in innovation using the
share of full-time full year (FTFY) workers in R&D occupations from the Census.
I define the latter to be workers in natural sciences, engineering, social sciences,
and computer science.8 I consider this measure to be a reasonable proxy for local
investment in innovation given that labor constitutes about 66.9% of total R&D cost
according to the NSF’s Business R&D and Innovation Survey and is, thus, an integral
part of total R&D expenses. I refer to this variable as R&D employment.

Second, I measure innovation output using citation-weighted patents per 1,000
workers as in Terry et al. (2023). For this purpose, I first create a citation-based
weight for each patent measuring the citations received relative to an average patent
in the last 5 years and same technology class. I then attribute an equal share of
each patent to its inventors and aggregate citation-weighted patents up to the CZ-
year using their location and application year. Finally, I normalize citations-weighted
patents for a CZ in a given year by the size of the local workforce to ensure my
measure is comparable across CZs.

7In accordance with the terms of use of the Vital Statistics of the US as digitized by the NBER,
I acknowledge indirect financial support from NIA grant P30-AG012810 through the NBER.

8Based on the consistent occupational codes developed in Autor and Dorn (2013), I classify four
broad categories of occupations as R&D workers: natural scientists (codes 68-83), social scientists
(166-169), computer scientists (64-65, 229-233), and engineers (44-59).
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3.3 Approach

I investigate the effect of workforce aging on innovation in a simple first-difference
specification for a local labor market g at time t following the growing literature on
local labor markets (Autor and Dorn, 2013; Autor et al., 2013):

∆Yg,t = αg + γt +∆Xg,t + εg,t, (1)

where Yg,t and Xg,t are measures of innovation and workforce aging, respectively,
and ∆ is the 10-year change in the variable. Estimating a difference specification
safeguards against permanent differences across CZs driving my results and allows
me to flexibly control for CZ-specific trends. I weigh observations by the CZ’s initial
working age population as in Autor et al. (2013).

Throughout, I focus on the WYS as my measure of workforce aging, which is
defined as the ratio of the population age 25–44 to the population age 25–64 for
a reference geography. The reference geography will be either the local CZ or the
average over foreign nations to which a CZ is exposed via exports. I discuss the
measure and its construction in greater detail together with the associated results.

4 Results

I present three results in this section. First, I document that local workforce aging
reduces innovation using an instrumental variable strategy. While this result is an
important first step, it is unclear whether it is driven by demand or supply factors.
To shed light on the underlying drivers, I show that the link between local aging and
R&D employment is driven by within age-group occupation changes rather than the
mechanical effect of a shifting age distribution and argue that this result suggests
demand factors as a driving force. Finally, I add to the evidence in favor of a strong
demand-side link between aging and innovation by showing that local innovation also
responds to workforce aging in export markets.
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4.1 Local Workforce Aging and Innovation

The first step in my analysis is to investigate the link between workforce aging and
innovation within a commuting zone. Let Popg,a,t be the age a population in CZ g

and year t, then the WYS is defined as

WYSg,t =

∑44
a=25 Popg,a,t∑64
a=25 Popg,a,t

× 100. (2)

Table A.1 reports summary statistics for changes in the local WYS. In line with
Figure 1, the WYS has declined on average in my sample by 2.8 percentage points
per decade. Notably, this decline has been relatively uniform across CZs. The un-
conditional standard deviation of changes in the WYS is around 6 percentage points,
while it is only 1.7 percentage points once we take out year fixed effects.

A natural concern with estimating (1) in this context is reverse causality due
to short-term shocks to local activity. For example, innovation might be positively
correlated with other measures of labor market opportunities, which in turn could
disproportionately attract young, more mobile workers. On the other hand, it could
be the case that environments with a lot of innovation have high cost of housing,
which might make them less attractive to young workers. In either case, we might
expect a biased coefficient, however, the direction of the bias is unclear ex-ante.

To address this potential issue, I propose an instrumental variable strategy lever-
aging historical births following a growing literature on demographics in macroeco-
nomics.9 I define a hypothetical population P̂opg,a,t as the share of total births in CZ
g at time t− a times the total US population of age a at time t:

P̂opg,a,t =
Birthsg,t−a∑
g Birthsg,t−a

×

(∑
g

Popg,a,t

)
. (3)

I then construct a WYS using this measure and equation (2) that relies upon varia-
tion in historical birth rates and, thus, isolates a long-term demographic component.
Intuitively, the measure captures a WYS as if people never moved and were subject

9Similar identification strategies underlie empirical analyses in, e.g., Shimer (2001); Engbom
(2019); Karahan et al. (2022); Derrien et al. (2023) and Acemoglu and Restrepo (2022). My instru-
ment reaches further back in time by multiple decades as I construct births starting in 1900.
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to identical mortality risks. By construction, the instrument should be unrelated to
contemporaneous economic fluctuations that are not driven by the WYS itself.

Identification Assumption (Local WYS). Conditional on year and CZ fixed effects,
changes in the local WYS instrument are only linked to innovation via the local WYS.

Note that the instrument directly addresses the concern of differential worker
mobility towards opportunities or properties of innovation environments that differ-
entially affect young workers. The instrument does not address concerns that link
birth rates to other characteristic of the CZ. For example, if there are differences in
fertility rates across educational and ethnic groups, then this would be picked up by
the instrument. I investigate this concern in the discussion section in a “bad control”
exercise inspired by Angrist and Pischke (2009).

Table 1: Predicting the WYS from Births

(1) (2) (3)
∆WYS

∆ŴYS 0.771*** 0.168*** 0.213***
(0.022) (0.032) (0.035)

F statistic 552 42.5 37.2
Initial conditions ✓ ✓
CZ FE ✓
Year FE ✓ ✓
Observations 2,166 2,166 2,166

Note: Inital conditions include the college, non-white, working young,
and female share of the population as well as the metropolitan share
and working age population size in 1980. CZ observations weighted by
1980 working age population. Standard errors clustered at the state
level. See text for variable description.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, ***
1%.

Table 1 reports the first stage results. Column (1), which controls for a range of
initial conditions, finds a strong relationship between the instrument and the WYS.
A one percentage point increase in the hypothetical working young share is associ-
ated with an 0.78 percentage point increase in the actual WYS. This finding is not
particularly surprising as the aggregate actual and hypothetical WYS coincide by con-
struction. Once we control for year fixed effects in column (2), the coefficient drops
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significantly, but remains statistically and economically highly significant. Adding
CZ fixed effects in column (3) does not materially affect the regression coefficient.
The final first stage is strong with an F statistic around 31 and a 1 percent increase
in the hypothetical WYS yields a 0.2 percentage points increase in the actual WYS.

Table 2: Local Workforce Aging and Innovation

(1) (2) (3) (4) (5) (6)
OLS IV OLS IV OLS IV

A. Employment ∆ R&D employment
∆WYS 0.038*** 0.029*** 0.024 0.198*** 0.025 0.217***

(0.006) (0.007) (0.022) (0.053) (0.026) (0.045)

B. Patenting ∆ Citation-weighted patents
∆WYS 0.037*** 0.033*** 0.019* 0.078** 0.023 0.092**

(0.003) (0.004) (0.011) (0.035) (0.014) (0.036)

F statistic 1,275 27.4 37.2
Initial conditions ✓ ✓ ✓ ✓
CZ FE ✓ ✓
Year FE ✓ ✓ ✓ ✓
Observations 2,166 2,166 2,166 2,166 2,166 2,166

Note: Inital conditions include the college, non-white, working young, and female share of the population as well as
the metropolitan share and working age population size in 1980. First stage F statistics reported. CZ observations
weighted by 1980 working age population. Standard errors clustered at the state level. See text for variable description.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.

With a strong instrument in hand, we can investigate the effect of local workforce
aging on local R&D employment and patenting, which are reported in Table 2. Panel
A reports the results for R&D employment. Controlling only for initial conditions in
columns (1) and (2), we find a significant correlation between the WYS and R&D
employment. A one percentage point increase in the WYS is associated with a 0.04
and 0.03 percentage point increase in the R&D employment share for the OLS and
IV specification respectively. These results diverge once we add year and commuting
zone fixed effects in column (3)-(4) and (5)-(6) respectively. While OLS results half
in magnitude and become insignificant, IV results increase substantially. The IV
coefficient from the full specification suggests that a one percentage point increase in
the local WYS leads to a 0.19 percentage point increase in local R&D employment,
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equivalent to 0.25 standard deviations. The results for local patenting, as presented
in Panel B, mirror those for local employment. In the full specification in column
(6), a one percentage point increase in the WYS leads to 0.1 more citation-weighted
patents per 1,000 workers or 0.2 standard deviations.

Overall, there are large differences between the OLS and IV results in Table 2, with
the latter being much larger in absolute value. One possibility is that these differences
are driven by reserve causality via a cost of living channel as suggested earlier. More
generally, Shimer (2001) and Engbom (2019) also observe a large difference between
OLS and IV using a similar identification strategy, but in a different context and with
different outcome variables. Thus, this observation is known in the literature.

4.2 Innovation Demand as a Driving Force

As discussed in Section 2, a link between workforce aging and innovation can be
explained by both demand and supply channels. To shed light on the underlying
driving force, I propose a decomposition exercise that investigates whether movements
R&D employment are driven by adjustments within or across age groups. I decompose
changes in R&D employment into three terms:

∆Yg,t =
∑

a=25,..,64

∆Ya,g,t · Pa,g,t−1︸ ︷︷ ︸
within

+Ya,g,t−1 ·∆Pa,g,t︸ ︷︷ ︸
across

+∆Ya,g,t ·∆Pa,g,t︸ ︷︷ ︸
interaction

,

where Ya,g,t is the share of local R&D workers among age a workers and Pa,g,t is the
share workers at age a. The within term captures changes in R&D employment within
age groups, holding constant the age composition. The across term captures changes
in the age composition holding constant age-specific R&D employment rates. The
final term captures the interaction of age composition and R&D employment rates.

If the link between aging and innovation is primarily driven by comparative ad-
vantage of young workers in innovation, then one might expect R&D employment
shares conditional on age to be unaffected by a changing WYS. Overall changes are
then driven by the across term. In fact, one might even find a negative within coef-
ficient as adjustments across groups are partly offset by the within-group margin to
clear the labor market (Card and Lemieux, 2001). In contrast, changes in demand
for innovation should lead a uniform increase in R&D employment across age groups
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and, thus, be reflected in the within term. Thus, regressing the individual terms on
the changes in the WYS can shed light on the underlying mechanisms.10

Table 3: Local Workforce Aging and Innovation — Decomposition Results

(1) (2) (3) (4) (5) (6)
OLS IV OLS IV OLS IV

A. Within Age ∆ R&D employment
∆WYS 0.023*** 0.014* 0.014 0.172*** 0.013 0.192***

(0.006) (0.007) (0.022) (0.056) (0.025) (0.045)

B. Across Age ∆ R&D employment
∆WYS 0.017*** 0.017*** 0.017*** 0.027** 0.019*** 0.033***

(0.001) (0.001) (0.004) (0.010) (0.005) (0.010)

C. Interaction ∆ R&D employment
∆WYS -0.003*** -0.002** -0.006*** -0.002 -0.007** -0.008*

(0.001) (0.001) (0.002) (0.005) (0.003) (0.005)

F statistic 1,275 27.4 37.2
Initial conditions ✓ ✓ ✓ ✓
CZ FE ✓ ✓
Year FE ✓ ✓ ✓ ✓
Observations 2,166 2,166 2,166 2,166 2,166 2,166

Note: Inital conditions include the college, non-white, working young, and female share of the population as well as the
metropolitan share and working age population size in 1980. First stage F statistics reported. CZ observations weighted by
1980 working age population. Standard errors clustered at the state level. See text for variable description.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.

Table 3 reports the associated results with Panel A, B, and C focusing on the
within, across, and interaction term, respectively. Two results emerge. First, most of
the effect of changes in the WYS on R&D employment is driven by the within-age
group component. In the full specification, the within, across, and interaction term
account for 89%, 15%, and -4% of the total effect, respectively. Second, the gap

10The interaction term is less informative about the relative strength of demand- and supply-side,
however, it does have some information on the degree to which workers of different age groups are
substitutes for each other. In particular, one might expect a negative coefficient if R&D workers
are imperfect substitutes across age groups as the rise in one group’s prevalence in the population
is partly offset by a reduction in their R&D employment rates to balance changes in the overall age
structure of R&D workers.
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between OLS and IV is driven almost exclusively by the within component, which is
small in the OLS and large in IV for the full specification. The gaps between IV and
OLS are relatively small for the across and interaction component.

Thus, we can conclude that the causal effect of local workforce aging on innovation
is not driven by a mechanical link between age and employment in R&D, as suggested
by a comparative advantage-based narrative. Instead, the estimates suggest that
demand factors are the primary driver of the workforce age to innovation link.

4.3 International Demand

Finally, to provide further evidence in favor of a strong demand channel, I investigate
the impact of workforce aging in export markets on local innovation. The demand
for new technologies is likely to extend beyond the local labor market. Thus, we can
use changes in the WYS in markets that are sales destinations for local firms, but
unconnected to their R&D labor market, as another test of whether there is a demand
channel of workforce aging.

In particular, I propose to use international demand via exports as a source of
variation in the WYS potentially driving the demand for local innovation. Intuitively,
if there is a demand channel linking workforce aging and innovation, then it should
be the case that firms linked to export destinations with an aging workforce reduce
their innovation activity and vice versa. While direct commuting zone export data is
not available, one can construct a proxy for workforce aging of international demand
via industry-level exports and local industry employment. Let WYSc,t be the WYS in
country c and Empg,i be the employment of industry i in CZ g as measured in the
County Business Patterns, I then calculate the industry level exposure as

WYSTrade,Ind
i,t =

∑
c

(
Exportsc,i∑
j Exportsc,j

)
× WYSc,t (4)

and map the industry-level measure back to the CZ using employment weights:

WYSTrade
g,t =

∑
i

(
Empg,i∑
j ̸=i Empg,j

)
× WYSTrade,Ind

i,t . (5)

Regressing this measure on local innovation activity can then be interpreted as a
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reduced form estimate of the effect of workforce aging of international demand on local
innovation. Variation in the proxy is driven by differential exposure of US industries
to other countries’ workforce aging and of CZs to US industries. For example, changes
therein are particularly negative in CZs specialized in industries exporting to Japan.

Identification Assumption (International demand). Changes in the WYS across
countries and as mapped to CZs via industry export and the CZ employment compo-
sition only affect CZs due to changes in the foreign WYS itself.

Importantly, to identify a demand channel, I need to rule out that changes in the
international WYS reflect other shocks that have an independent effect on innova-
tion. Given that the WYS is defined at the national level, it appears unlikely that
demand shocks simultaneously drive demand and the WYS. Thus, while confounding
demand shocks might be a larger concern at a local level, they are not at a national
level. However, one might be concerned that there are other channels at play that
simultaneously influence US innovation and the WYS. For example, young countries
tend to be poorer and less developed, giving them an overall lower demand for US
innovation. Note, however, that I am focusing on changes in the WYS, which ignores
level differences. Finally, by construction, I rule out any dynamic effects of exports
and employment composition by fixing them over time.

Table 4 confirms a strong link between workforce aging of international demand
and innovation. According to the most conservative specification in column (3), a one
percentage point increase in the WYS in export markets is linked to a 0.1 percentage
point higher R&D employment rate and 0.11 more forward-citations per 1000 workers.
Importantly, the results are relatively stable across specifications. As in the previous
exercise, these results suggests that workforce aging is linked to innovation due to
a strong demand channel. Commuting zones exposed to workforce aging appear to
reduce their innovation activity as they face lower demand for their inventions.

16



Table 4: Workforce Aging for Trading Parters and Inno-
vation

(1) (2) (3)
A. Employment ∆ R&D employment
∆WYSTrade 0.087*** 0.070** 0.100***

(0.010) (0.035) (0.034)

B. Patenting ∆ Citation-weighted patents
∆WYSTrade 0.083*** 0.092*** 0.118***

(0.005) (0.011) (0.015)

Initial conditions ✓ ✓
CZ FE ✓
Year FE ✓ ✓
Observations 2,166 2,166 2,166

Note: Inital conditions include the college, non-white, working young, and
female share of the population as well as the metropolitan share and working
age population size in 1980. CZ observations weighted by 1980 working age
population. Standard errors clustered at the state level. See text for variable
description.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.

4.4 Technology Adoption and the Demand for Innovation

How does the documented demand channel arise? As discussed in Section 2, one
potential source is declining technology adoption rates over the life cycle. Two addi-
tional pieces of evidence support this idea. Firstly, Appendix D documents that older
workers are slow to adopt new technologies by showing that older workers adopted
the computer in the workplace at lower rates during the 1990s (Friedberg, 2003).
Furthermore, the magnitudes are meaningful: workers age 55 and older had an about
15 pp lower propensity to use computers compared to the age 25-29 group.

Secondly, the technology adoption channel suggests faster wage growth in response
to a younger workforce due to faster innovation, however, these effects should be
more pronounced for younger workers due to their high technology adoption rates.
To investigate this prediction, I construct wages and employment at the CZ level for
all, young, and old workers separately, and then explore the impact of changes in the
WYS on wage growth using the same estimation equation as for R&D employment.

17



Table 5: Workforce Aging and Wages

(1) (2) (3) (4) (5) (6)
OLS IV OLS IV OLS IV

∆ Wages

∆WYS 0.089*** 0.142*** 0.118*** 0.218*** 0.087*** 0.085*
(0.021) (0.049) (0.021) (0.049) (0.018) (0.044)

Workers All All Young Young Old Old
CZ FEs 2,166 2,166 2,166 2,166 2,166 2,166

Note: All regressions control for CZ and year fixed effects. CZ observations weighted by 1980
working age population. Standard errors clustered at the state level. See text for variable
description.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.

As documented in Table 5, the local WYS is linked to higher wages in general,
however, its effect is especially pronounced for young workers. On average, a one
percentage point increase in the WYS leads to a 0.14 percent increase in wages,
however, the effect size almost doubles to 0.21 percent for younger workers, while old
workers’ wages only increase by 0.09 percent. Appendix Table B.1 confirms the same
pattern for the WYS of international demand.

The evidence, thus, suggests rising wages in response to a younger workforce and
higher relative wages for young workers. These findings are in line with the adoption
channel: All wages increase as innovation improves labor productivity, while higher
adoption rates among the young also increase their relative wages. Conversely, this
finding is at odds with a simple supply shock interpretation as a rise in the relative
supply of young workers should lead to lower, rather than higher, relative wages.

4.5 Discussion and Robustness

I document that CZs invest less in R&D and produce fewer inventions when faced with
an aging workforce of demand. This finding is an important insight given the rapid
workforce aging observed in the US and other developed nations. Before concluding,
I consider a range of potential concerns that deserve further discussion.
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General equilibrium effects. Adding year fixed effects in Table 2 raises the esti-
mated coefficients significantly for the local WYS. One interpretation of this finding
is that the first column incorporates general equilibrium effects or other aggregate
shocks, while specifications with year fixed effects do not. In practice, we observe
large changes in the WYS across all CZs over time, while changes in innovation are
not as pronounced. Specifications with year fixed effects abstract from these baseline
macro facts and, thus, put the focus on local variation. There are two ways to think
about these differences. On the one hand, innovation partly has not declined as much
in my sample due to the 1990s’ dot-com boom. If we interpret this event as a one-
time exogenous shock to R&D productivity that by chance occurred while the US
workforce was aging, then the more stringent coefficient might be more accurate. On
the other hand, the more stringent coefficient captures a partial equilibrium response
due to year fixed effects, which might reflect a reallocation across CZs towards those
with high technology demand as induced by the WYS, while CZs with relative low
WYS are abandoned. This interpretation implies that simple calculation using the
most stringent coefficients times the overall decline in the aggregate WYS could lead
to misleading results. Similar considerations apply in the case of crowding out or
changes in relative prices at the aggregate level. In this case, the coefficients still
suggest an important role for the WYS in shaping the allocation of R&D, however,
estimating the macro impact requires a full model.

Bad control. One concern with the instrumental variable strategy is that the in-
strument might be reasonably constructed yet unluckily reflect other drivers that are
associated with birth rates and have a separate effect on innovation. I investigate
this concern in a bad control exercise, where I first estimate the first stage and then
use the predicted values in combination with other covariates to investigate the ro-
bustness of my estimates. A stable coefficient on the WYS should strengthen our
confidence in the estimate (Angrist and Pischke, 2009).

∆Yg,t = αg + γt + βWYSPred
gt + δ∆Xg,t + εg,t (6)

I consider three confounders: gender, ethnic, and educational composition. Ap-
pendix Table B.5 confirms that neither the share of women, non-whites, or workers
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with bachelor degree explain the relationship between the WYS and innovation. The
coefficient remains virtually unchanged when adding all three variables.

Age-composition vs population growth. Another issue of interpretation is the
disentanglement of age composition and population growth, which are mechanically
linked.11 I attempt to address this issue by controlling for the growth rate of the
population within the young generation. For this purpose, I define

Pop Grg,t =

((∑34
a=25 Popg,a,t∑44
a=35 Popg,a,t

)1/10

− 1

)
× 100, (7)

and I construct an instrument using the same approach as for the WYS.
For export demand, I use the same mapping as for the WYS:

Pop GrTrade
g,t =

∑
i

(
Empg,i∑
j ̸=i Empg,j

)
×
∑
c

(
Exportsc,i∑
j Exportsc,j

)
× Pop Grc,t. (8)

Appendix Table B.3 reports the results for local WYS and population growth. The
instrument is strong with an F statistic above 20 in the full specification, while the
F statistic is above 50 for the WYS. Population growth itself has a positive impact
on innovation as measured by R&D employment and patenting as documented in
column (4). Importantly, the coefficients on the WYS are stable and significant when
including population growth in the specification. The effect of the local WYS on
innovation thus appears to be distinct from pure population growth. I reach a similar
conclusion for the WYS of export markets. Appendix Table B.4 shows that the
coefficient on WYSTrade is stable when controlling for population growth.

11To see this, suppose that there are only two generations alive at each point in time: young and
old. Old workers leave the economy at the end of each period, while fraction 1 − p young workers
survive and become old. The size of the young generation grows at rate n. It is straight-forward to
verify in this context that the overall population grows at rate n as well, while the WYS is given by

WYS =
1 + n

2 + n− p
.

It follows immediately that population growth and WYS are mechanically linked in the long-run.
Furthermore, one can show that short-run fluctuation in p also link to short-run fluctuations in
population growth. Thus, it is difficult to distinguish effects of the WYS and population growth
separately.
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Import linkages. Table 4 finds that workforce aging of export partners is asso-
ciated with less innovation, which I interpreted as evidence in favor of a demand
channel of workforce aging. However, one might be concerned that export partners
also might be import partner such that these results could reflect a supply effect or
knowledge spillovers. To address this concern, Table B.2 reports the international
trade results using imports instead of exports. The full specification has a precisely
estimated zero for employment and a significant negative coefficient for patenting.
Thus, the results are specific to exports, in line with the demand interpretation.

Additional robustness checks. I conduct a range of additional robustness checks
and report them in Appendix B. Firstly, I verify that my results are not driven
by geographically correlated shocks by adding year×state fixed effects to the full
specification. Appendix Table B.7 confirms that results for both measures of the
WYS go through in this very stringent specification. Secondly, I report my main
results unweighted and weighted by the beginning of period population in Appendix
Tables B.8 and B.9. The results are essentially unaffected for the local WYS, while
they are smaller in magnitude, but still significant, in the unweighted specifications for
export demand. Thus, the qualitative conclusion is unaffected by weighting. Thirdly,
I confirm in Appendix Tables B.10 and B.11 that my results are insensitive to an
alternative definition of R&D workers excluding social scientists. Finally, Appendix
Table B.6 reports results for alternative patenting measures and confirms that my
baseline choice is not driving the result. The only exception is raw patenting, which
has a positive, but insignificant, coefficient for the local WYS.

5 Conclusion

Over the last two decades the US has experienced fast workforce aging together with
a slowdown in productivity growth. The share of young workers in the economy
declined from 63% in 1990 to 50% in 2010, while productivity growth declined from
0.79% for the 1988–95 period to 0.37% in the 2006–19 period. This paper presents
evidence suggesting that workforce aging led to less innovation and, thereby, slower
productivity growth through a demand, i.e., market size, channel.
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Firstly, I estimate that local labor markets experiencing faster workforce aging
invest less in R&D and produce fewer inventions as measured by R&D employment
and patenting, respectively, using an instrumental variable strategy. Thus, workforce
aging leads to less innovation and, presumably, thereby to slower productivity growth.

Secondly, I show that the effect of workforce aging on R&D employment is driven
by occupational changes away from R&D within age groups. This finding is at odds
with a supply channel interpretation in which younger workers have a comparative
advantage in innovation, which suggests that innovation and aging are linked due
to the mechanical effect of a changing age distribution holding constant the age-
specific R&D employment rates. Instead, the evidence is in line with workforce aging
reducing the demand for innovation and thereby pushing workers out of the R&D
sector, independently of their age.

Finally, I provide further evidence in favor of an important demand channel by
estimating a decline in local innovation activity in response to workforce aging in
export destinations. Commuting zones exposed to workforce aging in their export
markets reduce their innovation, while the same does not hold true when focusing
on import destination. Together, these results confirm that workforce aging reduces
innovation due to its effect on the demand for innovation rather than the relative
supply of workers with a comparative advantage in innovation.

These findings are qualitatively in line with a growth model of costly technol-
ogy adoption and overlapping generations. In the model, older workers have lower
technology adoption rates due to their limited time remaining in the workforce. Con-
sequently, there will be less demand for new technologies in an aging economy and,
thus, less innovation. These results suggest that workforce aging may have been an
important contributor to slower economic growth. However, this slowdown might
have been efficient to the degree that older workers optimally adopt fewer technolo-
gies and firms take this effect into account when deciding on their R&D investments.
In other words, and similar to the argument presented in Vollrath (2020), slower
economic growth in response to workforce aging might be welfare maximizing.
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Appendix

A Data

A.1 Data construction

Patenting measures. I construct citations weights for a patent as follows the 5-
year forward citations divided by the average 5-year forward citations of granted
patents with applied for in t− 4 to t with the same primary CPC subsection. I split
a patent equally if it has multiple inventors and assign each part to the CZ of the
inventor. The total citation-weighted patents for a CZ is then simply the sum over
the weighs times the splitting factors for all patents applied for in a given year by
inventors residing in the CZ. To guard against outliers years I take the average of this
measure over the t − 1 to t + 1 horizon. I normalize this value by the working age
population in thousands via the Census.

Missing values. I impute missing values as 0. This applies to results for patenting
and international trade based results. Results are robust to instead dropping the
respective values.

Instrument. I construct historical births at the county level from three separate
sources. Firstly, for the 1901-1939 period I rely on historical full-count census for
1910, 1920, 1930, and 1940.(Ruggles et al., 2020) For each decade I impute annual
births using the age 0-9 population. The number of imputed births in a county in
1925 is thus the population born in 1925 as recorded in the 1930 census. Note that
this naturally does not account for mortality up to age 5, an issue that I will discuss
when detailing the actual construction of the instrument. For the 1940-67 period, I
obtain births by county directly from the Vital Statistics of the US as digitized by
the NBER. Finally, from 1967 onward I use the age 0 population recorded in the
SEER data as my measure of births.12 I map historical county-level birth to modern

12The digitized Vital Statistics of the US and SEER data are available here and here via the
NBER.
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CZs using the crosswalks developed in Eckert et al. (2018) and Autor and Dorn (2013).

I complement the data on births with data on the actual population size across
age groups for the US from the NBER SEER data. The hypothetical population of
age a at time t in CZ g is then the number of births in time t−a divided by the total
imputed births for the cohort times the actual population size of age a for the US in
the particular year:

P̂opg,a,t =
Birthsg,t−a∑
g Birthsg,t−a

×

(∑
g

Popg,a,t

)
. (A.1)

By construction, this instrument gets the aggregate evolution of population groups
correct, but uses historical births to distribute them across space. I aggregate this
hypothetical measure across age groups to obtain the hypothetical WYS using the
same formula as for the actual WYS itself:

ŴYSg,t =

∑44
a=25 P̂opg,a,t∑64
a=25 P̂opg,a,t

. (A.2)

A.2 Summary statistics
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Table A.1: Summary statistics

Variable Mean SD
Within-year

SD

∆ R&D emp. (%) 0.492 0.829 0.666
∆ Age-adjusted R&D emp. (%) -1.153 3.329 1.457
∆ Citation-weighted patents -0.018 0.528 0.387
∆ Unbiased Citation-weighted patents -0.040 0.553 0.399
∆ Unadjusted Citation-weighted patents -0.021 0.569 0.445
∆ Patents 0.043 0.252 0.199
∆ Innovators 0.135 0.374 0.291
∆WYS -2.976 5.912 1.730
∆ŴYS -3.821 6.802 3.262
∆WYSTrade -1.758 2.695 0.488

Note: R&D employment in percentage points. Patenting values are per 1,000 workers. Final column residualizes variable with
respect to year before calculating standard deviation. CZ observations weighted by 1980 working age population. See text for
variable description.

B Robustness

Table B.1: Workforce Aging and Wages —
Trade

(1) (2) (3)
∆ Wages

∆WYSTrade 0.227*** 0.275*** 0.193***
(0.047) (0.047) (0.043)

Workers All Young Old
CZ FEs 2,166 2,166 2,166

Note: All regressions control for CZ and year fixed effects. CZ
observations weighted by 1980 working age population. Standard
errors clustered at the state level. See text for variable description.

Standard errors in parentheses. Significance levels: * 10% , **
5%, *** 1%.
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Table B.2: Workforce Aging for Trading Parters and
Innovation — Import Robustness

(1) (2) (3)
A. Employment ∆ R&D employment

∆WYSTrade 0.079*** -0.056* 0.003
(0.009) (0.030) (0.033)

B. Patenting ∆ Citation-weighted patents

∆WYSTrade 0.073*** -0.063*** -0.081***
(0.006) (0.019) (0.024)

Initial conditions ✓ ✓
CZ FEs ✓
Year FEs ✓ ✓
Observations 2,166 2,166 2,166

Note: Inital conditions include the college, non-white, working young, and
female share of the population as well as the metropolitan share and working
age population size in 1980. CZ observations weighted by 1980 working age
population. Standard errors clustered at the state level. See text for variable
description.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.
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Table B.3: Workforce Aging vs Population Growth

(1) (2) (3) (4) (5) (6)
OLS IV OLS IV OLS IV

A. Employment ∆ R&D employment

∆WYS 0.023 0.170*** 0.008 0.166***
(0.022) (0.040) (0.023) (0.037)

∆Pop gr 0.142*** 0.239*** 0.140*** 0.133**
(0.026) (0.073) (0.027) (0.061)

B. Patenting ∆ Citation-weighted patents

∆WYS 0.023 0.092** 0.018 0.089**
(0.014) (0.036) (0.016) (0.033)

∆Pop gr 0.051** 0.152* 0.046** 0.095
(0.020) (0.089) (0.022) (0.074)

F stat. ∆ WYS 37.2 55.2
F stat. ∆ Pop. gr. 40.1 23.6
Observations 2,166 2,166 2,166 2,166 2,166 2,166

Note: All regressions control for CZ and year fixed effects. CZ observations weighted by 1980 working age
population. Standard errors clustered at the state level. See text for variable description.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.
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Table B.4: Workforce Aging vs Population Growth —
Trade

(1) (2) (3)
A. Employment ∆ R&D employment

∆WYSTrade 0.100*** 0.072**
(0.034) (0.034)

∆Pop grTrade -0.384*** -0.370***
(0.060) (0.059)

B. Patenting ∆ Citation-weighted patents

∆WYSTrade 0.118*** 0.111***
(0.015) (0.014)

∆Pop grTrade -0.118*** -0.095**
(0.041) (0.040)

Observations 2,166 2,166 2,166

Note: All regressions control for CZ and year fixed effects. CZ observations
weighted by 1980 working age population. Standard errors clustered at the
state level. See text for variable description.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.
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Table B.5: Workforce Aging, Employment, and Wages

(1) (2) (3) (4)
OLS IV OLS IV

A. Employment ∆ R&D employment

WYSPred 0.170*** 0.169*** 0.177*** 0.166***
(0.038) (0.037) (0.034) (0.036)

∆ Non-white 0.005 0.006 0.008
(0.010) (0.011) (0.010)

∆ Female -0.124*** -0.074**
(0.033) (0.031)

∆ College 0.155***
(0.028)

B. Patenting ∆ Citation-weighted patents

WYSPred 0.092*** 0.091*** 0.093*** 0.090***
(0.032) (0.032) (0.031) (0.031)

∆ Non-white 0.003 0.003 0.004
(0.006) (0.006) (0.006)

∆ Female -0.028 -0.014
(0.024) (0.026)

∆ College 0.043**
(0.016)

Observations 2,166 2,166 2,166 2,166

Note: All regressions control for CZ and year fixed effects. CZ observations weighted by 1980
working age population. Standard errors clustered at the state level. See text for variable
description.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.
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Table B.6: Workforce Aging and Innovation — Alternative patenting measures

(1) (2) (3) (4) (5)
A. Local ∆ Innovation measure

∆WYS 0.092** 0.083** 0.098*** 0.027 0.057**
(0.036) (0.040) (0.035) (0.018) (0.027)

B. Exports ∆ Innovation measure

∆WYSTrade 0.118*** 0.121*** 0.129*** 0.027*** 0.049***
(0.015) (0.019) (0.017) (0.006) (0.008)

Innovation measure Baseline Unadjusted Unbiased Patents Inventors
Observations 2,166 2,166 2,166 2,166 2,166

Note: Column (1) reports the baseline results for comparison, column (2) uses raw Citation-weighted patents as
weights, column (3) only counts citation from non-involved innovators, and column (4) does not ajust for citations at
all. Finally, column (5) uses the number of inventors active in a CZ instead of patents. All regressions control for CZ
and year fixed effects. Standard errors clustered at the state level. See text for variable description.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.
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Table B.7: Workforce Aging and Innovation — Results
with State × Year FEs

(1) (2)
A. Employment ∆ R&D employment

∆WYS 0.396***
(0.065)

∆WYSTrade 0.101***
(0.028)

B. Patenting ∆ Citation-weighted patents

∆WYS 0.163***
(0.036)

∆WYSTrade 0.077***
(0.018)

Type
Observations 2,157 2,157

Note: All regressions control for CZ and state× year fixed effects. CZ
observations weighted by 1980 working age population. Standard errors
clustered at the state level. See text for variable description.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.
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Table B.8: Workforce Aging and Innovation — Unweighted re-
sults

(1) (2)
A. Employment ∆ R&D employment

∆WYS 0.163***
(0.035)

∆WYSTrade 0.073***
(0.014)

B. Patenting ∆ 5-year Citation-weighted patents

∆WYS 0.076***
(0.019)

∆WYSTrade 0.043***
(0.008)

Observations 2,166 2,166

Note: All regressions control for CZ and year fixed effects. Standard errors clustered
at the state level. See text for variable description.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.
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Table B.9: Workforce Aging and Innovation — Alterna-
tive weight

(1) (2)
A. Employment ∆ R&D employment

∆WYS 0.160***
(0.027)

∆WYSTrade 0.098***
(0.029)

B. Patenting ∆ Citation-weighted patents

∆WYS 0.076***
(0.018)

∆WYSTrade 0.117***
(0.020)

Observations 2,166 2,166

Note: All regressions control for CZ and year fixed effects. Regressions
weighted by beginning of period working age population. Standard errors
clustered at the state level. See text for variable description.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.
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Table B.10: Local Workforce Aging and R&D Employment Excluding Social Scien-
tists

(1) (2) (3) (4) (5) (6)
OLS IV OLS IV OLS IV

∆ R&D employment excl. social scientists

∆WYS 0.026*** 0.020*** 0.018 0.151*** 0.019 0.162***
(0.005) (0.006) (0.017) (0.053) (0.020) (0.039)

F statistic 1,275 27.4 37.2
Initial conditions ✓ ✓ ✓ ✓
CZ FE ✓ ✓
Year FE ✓ ✓ ✓ ✓
Observations 2,166 2,166 2,166 2,166 2,166 2,166

Note: Inital conditions include the college, non-white, working young, and female share of the population as
well as the metropolitan share and working age population size in 1980. First stage F statistics reported. CZ
observations weighted by 1980 working age population. Standard errors clustered at the state level. See text for
variable description.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.

Table B.11: Workforce Aging for Trading Parters and R&D
Employment Excluding Social Scientists

(1) (2) (3)
∆ R&D emp. excl. soc. scientists

∆WYSTrade 0.063*** 0.058* 0.082***
(0.009) (0.032) (0.030)

Initial conditions ✓ ✓
CZ FE ✓
Year FE ✓ ✓
Observations 2,166 2,166 2,166

Note: Inital conditions include the college, non-white, working young, and
female share of the population as well as the metropolitan share and working
age population size in 1980. CZ observations weighted by 1980 working age pop-
ulation. Standard errors clustered at the state level. See text for variable description.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.
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Online Appendix
Not for publication

C Aging, Technology Adoption, and Growth

This section develops an endogenous growth model that features a direct link between
workforce aging and innovation via a demand channel. This feature allows it quali-
tatively to capture some of the patterns documents in Section 4. The model builds
on the standard expanding varieties growth model as in Romer (1990) and extends it
in two directions.13 Firstly, I introduce demographics using a standard overlapping
generations structure, and, secondly, technology adoption is made an explicit choice
on part of workers.

C.1 Environment

Time is discrete and indexed by t. The economy features four types of agents. House-
holds work, learn about technologies, and face a standard savings-consumption choice.
The final goods sector in turn hires workers and buys equipment at competitive prices
to produce the final good. Equipment is produced by specialized monopolists using
the final good. Finally, new equipment varieties, which I will refer to as new tech-
nologies, are produced by an innovation sector, which borrows from households and
repays them using profits generated by the associated equipment manufacturers. The
final good is chosen as the numeraire.

I will denote the set of available technologies and new inventions as At and at

respectively. The stock of technologies evolves cumulatively by adding new inventions:

At = at + At−1. (C.1)

Households. The representative household maximizes
13See Gancia and Zilibotti (2005) for an introduction to expanding variety growth models.
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∞∑
s=0

βs(1 + n)s ln(ct+s), (C.2)

where β is the time discount factor, n is the population growth rate, and ct is per
capita consumption.14

The household derives income from interest rt on savings bt and wages wt, and
spends it on savings, consumption, and technology adoption ht. Technology adoption
is linked to labor income and will be discussed in detail below. I focus on per capita
values throughout to simplify the exposition. The budget constraint is given by

(1 + n)bt+1 = (1 + rt)bt + wt − ht − ct. (C.3)

Savings are restricted to be non-negative, bt+1 ≥ 0.
The household is composed of two generations, young and old. The old generation

exits the economy at the end of each period. It is replaced by the current young
generation, whereof a share 1 − p survives across periods. The young generation is
replaced by a new young generation whose size grows at rate n. The setup gives rise
to a constant share of young workers in the economy, denoted by sy:

sy =
1 + n

2 + n− p
(C.4)

The analysis below focuses on comparative statics with respect to the population
growth rate n and abstracts from transition dynamics induced by time-varying birth
rates. Comparative statics for n are the appropriate analysis when considering the
US. As discussed in Engbom (2019) and Karahan et al. (2022), the demographic
patterns in Figure 1 are primarily driven by declining fertility rates.

Technology adoption is modeled as a costly, one-off investment on part of the
household. Each period the representative household is confronted with the set of
available technologies and decides for each worker which additional technologies to
adopt. There is no forgetting, so a worker will be able to use a skill for the rest
of her life once learned. Furthermore, workers can supply one unit of labor for all

14Log utility is chosen to keep the exposition simple and can be replaced by a CRRA utility
function without changing the main results. I will throughout assume β(1 + n) < 1 to ensure
effective discounting on part of the household.
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technologies in their skill set, so a larger skill set translates into a larger effective
labor supply.

For technology a ∈ At let ℓt(a) be the share of workers in the economy that have
adopted the technology and ℓgt(a) be the share of workers of age group g that have
adopted the technology. The former is then simply a weighted average of the latter:

ℓt(a) = syℓyt(a) + (1− sy)ℓot(a). (C.5)

Labor supply earns technology-specific wage Wt(a). Per capita labor earnings are
given by

wt = sy

∫
At

ℓyt(a)Wt(a)da+ (1− sy)

∫
At

ℓot(a)Wt(a)da (C.6)

Knowledge does not come for free, however. All technologies are subject to per
worker learning costs, which are i.i.d. distributed across technologies and workers,
and constant over time for a particular technology-worker combination. I will denote
the distribution by F (n), where n is the cost of adopting a particular technology in
terms of final goods. Workers do not differ in their inherent learning ability. Thus,
I abstract from any considerations of reduced learning ability over the life-cycle or
similar mechanisms.15

From the perspective of the household, workers in a given cohort look identical
except for the technology adoption costs. Furthermore, I will show below that in
equilibrium we will have Wt(a) = Wt such that technologies will look identical from
the perspective of a worker apart from their adoption costs. This facilitates the
analysis greatly, as we can focus on adoption costs only.

Cohorts enter the economy with a blank slate and, thus, available technologies are
indistinguishable to them apart from their adoption costs. We can thus think of the
household’s optimization problem as choosing a threshold type nyt such that young
workers adopt all technologies with cost type n ≤ nyt. The total adoption costs per
young worker hyt and effective labor supply for a technology ℓyt(a) are thus given by

15It is straight-forward to incorporate them and they amplify the existing mechanism, however,
to the best of my knowledge, there does not exist strong evidence to support these mechanisms.
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hyt = At

∫ nyt

0

ndF (n) and ℓyt(a) = F (nyt). (C.7)

The formulation takes advantage of homogeneous adoption costs, which guarantee
that the share of adopters is identical across available technologies.16

Consider the old generation next. A crucial difference is that they have already
adopted technologies in the previous period for which they do not need to pay adop-
tion costs again. Thus, old workers will only have to pay adoption costs for old
technologies if they haven’t learned about the technology yet, i.e. if the adoption
threshold exceeds its counterpart from the previous period. For new technologies, on
the other hand, old workers have to pay the full adoption costs. Again, the benefits
of adopting a technology are independent of its invention date, such that the worker
can simply set an adoption threshold not with the associated costs hot:

hot = At−1

∫ not

0

1{nyt−1 < n}ndF (n) + at

∫ not

0

ndF (n). (C.8)

Note that the indicator guarantees that the technology has not been previously
adopted by the generation. The associated labor supply then depends on the in-
vention period as well. In particular, the adoption threshold for old technologies is
the maximum of the previous period’s adoption threshold and the current period’s
threshold. The adoption of new technologies is as in the baseline case for the young.

ℓot(a) =

F (max{nyt−1, not}) if a ∈ At−1

F (not) if a ∈ at.
(C.9)

Total technology adoption costs are the aggregate across generations:

ht = syhyt + (1− sy)hot. (C.10)

In summary, the representative household makes technology adoption choices
weighing current cost against current and future benefits, where the latter depend
on wages to be earned from a particular technology. This naturally brings us to the
production sector.

16If instead learning costs were identical across workers, optimal adoption would imply an all-or-
nothing pattern for each technology without affecting the model’s core predictions.
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Final production. The final good yt is produced by a representative firm using
labor ℓt(a) in conjunction with equipment kt(a) for a ∈ At. Each technology is
associated with a unique type of equipment.17

yt =

∫
At

ℓt(a)
1−αkt(a)

αda. (C.11)

The final good producer takes equipment prices Pt(a) and wages Wt(a) as given
and solves its standard profit maximization problem:

max yt −
∫
At

Wt(a)ℓt(a)da−
∫
At

Pt(a)kt(a)da s.t. (C.11). (C.12)

Equipment manufacturers. The blueprint for each technology is owned by an in-
dependent monopolist, who produces the associated capital good at constant marginal
costs ψ in terms of the final good and sells it to the final producer at cost Pt(a). To
simplify the exposition I will assume that equipment fully depreciates each period.
This assumption can easily be relaxed without changing any of the main results below.

Given full depreciation and market clearing, the equipment produced is the same
as the equipment used and I will use the same notation. The monopolist takes into
account its price effect on the demand by the final goods producer, but not the
associated second-order effects on technology adoption by workers. This ensures that
the analysis remains tractable. Resulting, the monopolist solves the static problem

maxPt(a)kt(a)− ψkt(a), s.t. Pt(a) = α

(
ℓt(a)

kt(a)

)1−α

. (C.13)

Innovation. The innovation sector is the key driver of economic growth by creating
new technologies. The sector invest per capita resources xt to generate new varieties

17Note that the standard expanding variety model is a special case of this production function,
where all workers know about all technologies. In that case, ℓt(a) = 1 and thus the production
function simplifies to

yt =

∫
At

kt(a)
αda.
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at+1 according to the simple linear production function:18

at+1 = φ0xt. (C.14)

To simplify the exposition, I will directly assume that the innovation sector is
governed by two equations. Firstly, equation (C.15) states the benefits of innovation
per dollar invested have to be equal to the opportunity cost of investment, which is
the economy’s effective discount rate:19

φ0v
0
t+1 =

(
1 + rt+1

1 + n

)
, (C.15)

where v0t+1 is the expected net present value of profits from a new invention and
φ0 the research productivity. Appendix C.4 shows that this can be motivated by a
competitive innovation sector borrowing from the household to finance its innovation
expenditures.

Secondly, the innovation sector distributes all profits to the bondholders in the
economy, such that

rtbt =

∫
At

πt(a)da. (C.16)

The full distribution of income to bondholders can be motivated by assuming
that the innovation sector does not have any equity initially and operates in perfect
competition or with free entry. Due to the linear production function, this will imply
zero profits and thus all income is paid to the lenders.

C.1.1 Market-clearing conditions

Finally, the economy is subject to two market-clearing conditions. Goods market-
clearing requires that resources are either invested in learning, capital goods, and
innovation or consumed.

18Formulating the production function in per capita terms neutralizes strong market size effects
from population growth (see e.g. Jones (1995)). This simplifies the exposition greatly and allows
me to focus on balanced growth path differences. The main results will still be in effect in a semi-
endogenous growth setup, however, they will apply to the transition path of the economy instead of
the balanced growth path. This is unlikely to change the short to medium term implications of the
framework developed in this paper.

19Population growth appears in this equation as profits scale with the population size.
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yt =

∫
At

ψkt(a)da+ ht + xt + ct. (C.17)

Secondly, market clearing in the investment sector requires that savings equal
investment in innovation:

xt = (1 + n)bt+1 − bt. (C.18)

C.1.2 Equilibrium

I next define a competitive equilibrium in this economy and a balanced growth path
equilibrium. I will focus on the latter only in my analysis below.

Definition 1. Given {A0, a0, ny−1}, a Competitive Equilibrium is a sequence

{yt, ht, xt, ct, At, at, nyt, not, {kt(a), ℓyt(a), ℓot(a), ℓt(a), Pt(a),Wt(a)}a∈At , rt}
∞
t=0

such that

(a) the representative household, the final good producer, and the producers of inter-
mediate goods solve their maximization problems,

(b) the no-arbitrage condition in the investment sector holds,

(c) markets clear.

Definition 2. A Balanced Growth Path is a competitive equilibrium such that con-
sumption grows at constant rate g.

C.2 Equilibrium Characterization

I will limit the equilibrium characterization to the core results that are necessary to
understand the intuition of the model. Detailed derivations and proofs are provided
in Appendix Section C.5.

Lemma C.1. On any BGP, the interest rate satisfies 1 + r = 1+g
β

. Furthermore, as
long as g ≥ 0, the effective discount rate of the economy satisfies 1+r

1+n
> 1.

47



Technology adoption and wages. To simplify the analysis and abstract from
corner solutions, I will assume that adoption cost follow a continuous distribution
with unbounded support from above.

Assumption 1. The cost distribution function satisfies f(n) > 0 for n ∈ (0,∞),
where f(n) is the pdf of F (n).

Lemma C.2. On any BGP, tasks wages W are constant and identical across tasks.
Furthermore, the adoption thresholds for young and old workers are constant over
time and given by

ny = W
(
1 +

1− p

1 + r

)
and no = W . (C.19)

Firstly, note that constant wages per variety are a standard result in expanding
variety models with constant marginal costs of production in the intermediary sector.
In particular, the capital-labor ratios in the model, which determine the wages, are
directly linked to the equilibrium price of the intermediary good, which in turn is
supplied at a constant markup over marginal costs. Since the latter is constant and
identical across equipment varieties, wages are as well.

The second part of the Lemma is a direct result of the first. As all technologies
yield the same benefits, workers only differentiate between them according to their
adoption costs. The benefits of adoption are then the expected, discounted wages
earnings. The marginal adopted technology type equalizes cost and benefits. For the
old generation, this implies that all technologies yielding weakly positive net income
are adopted, while the young generation adopts technologies whose current and future
expected, discounted benefits exceed current adoption costs.

Corollary C.1. gap

(a) Workers adopt technologies as early as possible or never.

(b) Old workers have lower technology adoption rates driven by threshold differences
for new technologies.

(c) Take-home income is increasing in age over the life cycle and in the cross-section.
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(d) Old technologies have higher aggregate technology adoption rates than young tech-
nologies.

Consider (a) first. The payoff from learning about a technology is strictly in-
creasing in the number of periods that a given generation can use it in the labor
market, while the adoption costs stay constant. Thus, it is always preferable to adopt
a technology early if ever.

Part (b) links the insight of early adoption to differences in the availability of
technologies over time. In particular, old workers adopted old technologies when
they were young and, thus, due to the constant adoption threshold for each age
group, young and old workers adopt the same share of old technologies. In contrast,
old workers apply their current, lower adoption threshold to new technologies as
they did not have the opportunity to learn about them previously. Via a simple
composition effect across old and new technologies, this implies that old workers have
lower aggregate technology adoption rates compared to young workers, who apply
the same, high technology adoption threshold to all currently available technologies.

Note that higher aggregate technology adoption rates also imply larger skill sets
for young workers. The latter might be perceived as a bug rather than a feature
given the extensive evidence for increasing compensation over the life-cycle (See e.g.
Lagakos et al. (2018)). While the model does not possess features that are likely
important for life-cycle wage dynamics such as job-ladders or learning-by-doing, it
still features an upwards sloping take-home income, which I define as gross income
minus adoption costs, in cross-section and across the life-cycle as pointed out in part
(c).

Two insights are driving this result. Firstly, old workers gain more from old
technologies as they do not have to pay their adoption costs again. Secondly, old
workers also gain more from new technologies as they adopt all new technologies that
generate positive net cash flow in this period. On the other hand, young workers
adopt some technologies with negative cash flow in the current period due to the
benefits in the next period. As a result, old workers receive larger take-home income
from the labor market.

Finally, and as pointed out in (d), technologies themselves are subject to a life-
cycle pattern, which arise due to composition effects. Over time, low adoption gen-
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erations, i.e. the initially old, are replaced by high adoption generations. Eventually,
all active generations entered the economy when the technology was available and,
thus, had the chance to adopt it when young. Therefore, for a given technology, the
aggregate adoption rate has an upwards trajectory converging towards its long-run
value, the adoption rate of young workers.

Firm Profits and the Value of Innovation. Having solved the worker problem,
we can next turn our attention to the intermediary problem.

Lemma C.3. Per capita profits for a variety are proportional to its adoption rate:

πt(a) = π̃ℓt(a). (C.20)

Similarly, the per capita value of a new variety is proportional to its discounted
market size:

v0 = π̃

(
ℓN +

(
1 + n

r − n

)
ℓE
)
, (C.21)

where ℓN = syF (ny) + (1 − sy)F (no) and ℓE = F (ny) are the aggregate technology
adoption rates for new and old technologies respectively.

Firstly, note that the formulation for profits is standard in the endogenous growth
literature apart from the explicit acknowledgment of adoption rates as a driver of
market size. The latter matter for per capita profits as the monopolist earns constant
profits per adopter.

Market size effects for profits directly bleed into the value of a new innovation.
The key insight from is formulation is that the adoption rate for new technologies
only matters in the first active period as the technology becomes an old technology
afterward. Note that the expansion of market size for old technologies is directly
linked to the fact that they are adopted by young workers only. As a result, the
workforce age composition matters for short-run profits, but not in the long run.

How does aging impact the model economy? Before understanding the effects
of aging in the model, I quickly note that the BGP exists and is unique.

Proposition C.1. There exists a unique balanced growth path equilibrium.
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To gain some insight into the model dynamics I will discuss a set of comparative
statics exercises. I start by taking the WYS sy as exogenous in partial equilibrium
and then discuss how the intuitions developed for this simple scenario translate to
general equilibrium.

Proposition C.2. Holding the constant the interest rate and population growth rate,
an exogenous decline in the WYS decreases the average adoption rate for new and
overall technologies, (gross) output, and the value of new inventions.

The important insight is that there are pure composition effects from the WYS
pushing down technology adoption, output, and the value of new innovations. The
next proposition highlights how these feed into general equilibrium.

Proposition C.3. Holding constant the population growth rate, an exogenous decline
in the WYS decreases the aggregate adoption rate for new and overall technologies,
investment into new technologies relative to old technologies, the value of new inven-
tions, the interest rate, and the economy’s productivity growth rate.

The key insight from the proposition is that the partial equilibrium results based
on Proposition C.2 carry over into general equilibrium. In response to declining firm
values, interest rates have to decline as well to satisfy the research arbitrage equa-
tion. Lower interest rates translate to lower productivity growth rates via the Euler
equation. The overall mechanism is clear: Population aging reduces the technology
adoption rate for new innovations via a simple composition effect. Declining adoption
rates decrease the value of innovation and, thus, lead to a reduction in R&D invest-
ment. The resulting decline in innovation directly implies lower productivity growth
rates.

Finally, the next proposition confirms that these predictions carry over to a decline
in the working young share driven by declining population growth rates, which is
the empirically relevant case for the US. The decline in fertility itself has first-order
consequences via market size effects, which turn out to point in the same direction
as the composition effects.

Proposition C.4. A decrease in the population growth rate, which mechanically leads
to a decrease in the WYS, decreases the aggregate adoption rate for new and overall
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technologies, investment into new technologies relative to old technologies, the value
of new inventions, the interest rate, and the economy’s productivity growth rate.

What are the policy implications of an aging economy? Given the results
above, the question arises of whether there is room for policy in this framework. To
study this question, I introduce the social planner problem in Appendix C.3 and focus
on its implications here:

Proposition C.5. The social planner solution features higher technology adoption
rates for older workers, a flatter life-cycle profile of adoption thresholds, and a higher
productivity growth rate.

Inefficiently low productivity growth rates are a ubiquitous feature of the endoge-
nous growth literature as firms are unable to capture the full value of their innovation,
e.g. because part of it is paid to workers in wages. Similarly, monopoly distortions
feed into inefficiently low wages, which, in this framework, translate into inefficiently
low adoption rates. Setting optimal capital-labor ratios immediately yields higher
adoption rates. The adoption profile flattens as future resources generated by young
workers are discounted at a higher rate due to faster economic growth, providing a
countervailing force for young workers to the overall larger marginal product of tech-
nology adoption. Since old workers do not have future income, they are only subject
to the pure increase in marginal product effect.

Proposition C.6. In the Social Planner Equilibrium, a decrease in the population
growth rate, which mechanically leads to a decrease in the WYS, decreases the aggre-
gate technology adoption rate as well as the economy’s productivity growth rate.

Proposition C.6 is the social planner equivalent to Proposition C.4 and highlights
that the direction of the response to an aging population is the same across solution
concepts. Thus, while adoption levels and innovation activity are sub-optimally low
in the competitive equilibrium, its response to an aging population is not necessarily
sub-optimal. The intuition for this result is that the forces leading to a declining
productivity growth rate in the competitive equilibrium are still active in the social
planner solution. Lower population growth rates lower the value of resources in the
future. Furthermore, adoption rates decline as well due to changes in the relative
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weight of resources across periods, leading to a declining social value of innovation as
well. Thus, while adoption levels and innovation activity are sub-optimally low in the
competitive equilibrium, their responses to an aging population are not necessarily
sub-optimal.

C.3 Social Planner Solution

Decision problem. The equations for the planner setup are provided below. I
forgo proving that ny > no in equilibrium and directly impose it here. This is without
loss of generality as there are no inefficiencies in the adoption conditional on factor
rewards.

max
∞∑
s=0

βs(1 + n)s ln(ct+s),

s.t.
∫
At

ℓt(a)
1−αkt(a)

αda =

∫
At

ψkt(a)da+ ht + xt + ct

ℓt(a) =

syF (nyt) + (1− syt)F (nyt−1) if a ∈ At−1

syF (nyt) + (1− syt)F (not) if a ∈ at−1.

ht = syAt

∫ nyt

0

ndF (n) + (1− sy)at

∫ not

0

ndF (n)

At+1 = At + φ0xt

Naturally, we have to add the appropriate initial conditions on technology and
previous adoption.

Definition 3. A social planner equilibrium is a set of sequences

{yt, ht, xt, ct, At, at, nyt, not, {kt(a), ℓyt(a), ℓot(a), ℓt(a)}a∈At}
∞
t=0

such that the social planner maximizes its objective functions subject to its constraints
and markets clear.

Definition 4. A Balanced Growth Path for the social planner problem is a social
planner equilibrium such that consumption grows at constant rate g.
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C.4 Motivating the Investment Sector

I briefly outline a investment sector problem that gives rise to the equations presented
in the text. There is a representative investment firm producing new innovations with
production function

at+1 = φ0xt.

To finance innovation, the firm borrows from the households at rate rt such that
its (discounted) profits from new investments are given by(

1 + n

1 + rt

)
Et

[∫ at+1

0

v0t+1(a)da

]
− xt,

where v0t+1(a) is the value of new innovation a at time t + 1, which equals the
present discounted value of profits. Due to the linearity of the investment function
and homogeneous adoption costs, it follows immediately that any interior solution
needs to satisfy

φ0

(
1 + n

1 + rt

)
v0t+1 = 1,

The second equation can be motivated by assuming that the sector is fully lever-
aged at t = 0. From the equation it follows immediately that the sector never builds
equity such that rtbt has to equal all the profits earned by the sector.

C.5 Derivations and Proofs

This section provides derivations and proofs omitted from the main text.

Production and Prices. First order condition for the final producer’s problem
yield the standard factor demands:

Pt(a) = α

(
kt(a)

ℓt(a)

)α−1

and Wt(a) = (1− α)

(
kt(a)

ℓt(a)

)α

.

Monopolist solves the profit maximization problem taking into account the equip-
ment demand for monopolist price Pt(a), which in turn pins down the equilibrium
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capital-labor ratio K and equilibrium task wage W via the first order conditions of
the final good producer:

Pt(a) = P =
ψ

α
,

kt(a)

ℓt(a)
= K ≡

(
P
α

) 1
α−1

, and Wt(a) = W ≡ (1− α)Kα.

Plugging in the definition of K and P yields the expression in Lemma 1 for the
task wage.20 Note that we can already solve for firm profits nd the value of a new
invention conditional on household adoption:

πt(a) = (Pt(a)− ψ)kt(a) = (1− α)α
1

1−αP− α
1−α ℓt(a) = αWℓt(a).

The value of a new invention is then just the expected, discounted value of profits.

Household Decisions. With the skill wages in hand we can turn our attention
to the household problem.

Proof of Lemma C.1. Note that this is the standard Euler equation result. In partic-
ular, the first order conditions of the household for bt+1 and ct require

1 = β(1 + rt)
ct
ct+1

.

By definition of a BGP ct/ct+1 = 1/(1+g) and the first result follows. The second
part follows by rearranging the Euler equations and noting that β(1 + n) < 1. by
assumption. Thus, as long as g ≥ 0, we have effective discounting.

Consider next the first order conditions for the adoption threshold of old work-
ers. This does not have any inter-temporal implications and thus simply involves
maximizing the net-resources for the household:

20Note that ∂W/∂P < 0, i.e. the equipment price set by the intermediary producer reduces the
task wages via its impact on the capital-labor ratio. This will become important once we consider
adoption rates by households. In particular, it will be the case that adoption is increasing in the
tasks wage. As a result, the intermediary producer has an incentive to decrease prices as to increase
the market size. I will abstract from this consideration, but note that this will naturally lead to a
lower markup compared to the case considered here, but higher profits. Allowing the intermediary
producers to take into account this impact makes the problem intractable.
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(1− sy)f(not)W = (1− sy)f(not)not.

The left hand side states the gross resources generated at the margin, which is the
mass of workers times the mass of technologies at the threshold times the (constant)
task wage. This has to be equal the cost at the margin, which are the mass of workers
to which the threshold applies time the mass of technologies at the threshold (since
the household has to pay for all of them) time the cost per technology at the threshold,
which is the threshold itself. Following the assumption that f(not) > 0, the condition
simplifies to the constant adoption threshold in the text. Positive support ensures the
the threshold is clearly defined and unique. Having f(n) = 0 for some n potentially
gives rise to saddle points or sets of optimal thresholds.

Note that I’ve implicitly assumed that the marginal value of resources is positive
and have already normalized by the mass of technologies around the threshold, which
could be at or At−1 given the threshold. Both terms will show up on both sides and
thus do not influence the adoption threshold.

Next, consider the problem for choosing the adoption threshold for the young
household. I will first take the derivative assuming that nyt > not and then confirm
this conjecture. Furthermore, I will highlight that assuming the opposite does not
yield a solution in line with the conjecture.

The first order condition for syt can be derived as

syf(nyt)f(nyt)W +
λt+1

λt
(1− sy)f(nyt)W = syf(nyt)nyt.

Firstly, note that the right hand side is the same as before. Secondly, consider the
LHS. The first term is as for the old generation and represents current gains. The
second term represents future gains from current adoption, appropriately discounted
by the relative value of resources λt+1/λt, where λt is the Lagrange multiplier on the
resource constraint. Furthermore, note that mortality risk is taken into account as
the benefits only apply to a mass (1− sy) of workers.

Plugging the Euler condition for the relative value of resources across periods and
normalizing by sy yields the expression for ny in the text. Note that the expression
satisfies ny > no as per our conjecture.
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Now instead suppose nyt < not. Then the resulting first order derivative can be
expressed as

syf(nyt)f(nyt)W = syf(nyt)nyt −
λt+1

λt
(1− sy)f(nyt)nyt.

Firstly, note that the benefit are only current period, as the future adoption
threshold being larger than the current one implies that the technology will be adopted
tomorrow anyways and thus tomorrows benefits do not depend on today’s action. On
the other hand, the cost of adoption reflect both current period adoption costs as
well as the savings made next period. In particular, adopting the technology today
implies that the household does not have to pay for the adoption tomorrow. It is
straight-forward to show that the associated adoption threshold with this first order
condition violates no > ny and thus this can never be an equilibrium.

Proof of Lemma C.2. See derivations above.

Proof of Corollary C.1. See derivations above for part (a).
For part (b) note that it follows immediately from (C.19) that young workers adopt

new technologies at a higher rate. In particular, the adoption rate for new technologies
for either generation is F (ny) and F (no) respectively. Given that ny > no and F (·)
is a strictly increasing function, the latter will always be larger. This carries over
to the overall adoption rate via a simple composition effect. The share of adopted
technologies among At for each age group, denoted by Ay and Ao respectively, is
given by:

Ay =
AtF (ny)

At

= F (ny) and Ao =
At−1F (ny) + atF (no)

At

=
1

1 + g
F (ny)+

g

1 + g
F (no).

Given that no < ny, it follows immediately that Ay > Ao for g > 0.

Next, consider part (c). The proof for the first part of this is straight-forward
when considering the net income earned by a young worker. In particular, let wyt the
gross income of the young generation, then we can decompose the overall net income
as
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wyt − hyt =At

∫ ny

0

(W − n)dF (n)

=At−1

∫ ny

0

(W − n) dF (n) + at

∫ no

0

(W − n) dF (n) + at

∫ ny

no

(W − n) dF (n)

The first line states that the net income for young workers is the mass of available
technologies times the integral over the net benefits from each adopted technology
type. The second line splits this into the net benefits for technologies that the old
generation adopted when young plus the net benefits of the new technologies adopted
by the old in the current period plus the net benefits from new technologies adopted
by the young, but not by the old. We can compare this to the same calculation for
old workers:

wot − hot = At−1

∫ ny

0

WdF (n) + at

∫ no

0

(W − n) dF (n).

Note that old workers do not have to pay the adoption cost for technologies
adopted when they were young. The comparison across terms is quite straight-forward
then. Old workers have a clear advantage in the first terms. The second term is the
same for both and, finally, the third term for young workers is always negative. One
can show this immediately by noting that W − no = 0 by definition of the adoption
threshold. Thus W − n is going to be negative for all n > no. The intuition is
straight-forward. Old workers adopt all technologies that help them in the present.
Thus, if there is a technology that young adopt, but old do not, then this technology
cannot yield positive returns in the present. Note that the present discounted value
is still going to be positive from the future income flow.

For the second part, note that the we can express the income of an old generation
tomorrow as

wot+1 − hot+1 = At

∫ ny

0

WdF (n) + at+1

∫ no

0

(W − n)dF (n).

It is trivial to show that this exceeds wyt − hyt.
Finally, for part (d) note that old technologies, i.e. technologies invented in the

previous period, were adopted by the current old generation when they were young.
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Furthermore, the current adopters are the young generation as well. This yields an
economy with adoption rate of F (ny). In contrast, new inventions are first adopted
by the current new and old generations. As a result, their adoption rate is simply
syF (ny) + (1− sy)F (no). Given that ny > no, this is smaller than F (ny).

The Value of New Innovations. Having determined technology adoption rates,
we can turn our attention back to the value of innovation. Note that an invention is
a new technology in its first period and an old afterwards. Thus, ℓt(a) = syF (ny) +

(1 − sy)F (no) in its first period and F (ny) in all following periods. Thus, the (per
capita) value of a new invention is given by

v0 =
∞∑
s=0

(
1 + n

1 + r

)s

E[πt+s(a)|a ∈ at]

= αW

(
syF (ny) + (1− sy)F (no) +

∞∑
s=1

(
1 + n

1 + r

)s

F (ny)

).

Note that (1+n)s corrects for population growth. The formula in the text simply
solves the infinite sum and rearranges terms.

Furthermore, note that by a similar calculation, we can determine the value of old
technologies as

vE = αW
(
1 + r

r − n

)
F (ny).

The only difference being that the adoption rate is constant for all periods.

Lemma C.4. There exists a unique interest rate r that satisfies the research arbitrage
equation. Furthermore, there exist φ

0
such that ∀φ0 ≥ φ

0
, the equilibrium growth rate

satisfies g ≥ 0.

Proof of Lemma C.4. Firstly, we can use our results in the previous lemmas to rear-
range the research arbitrage equation to

1 + n

1 + r
v0 =

1

φ0

.
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Note that the RHS is constant in r. The LHS, in contrast, is strictly decreasing in
r for two reasons. Firstly, and increase in r increases the discount rate, which lower
the value of future profits. Since all terms are discounted, this has a strictly negative
effect. Secondly, an increase in r also pushes down ny, which further decreases the
value of innovation. Given that all these effects are strict and point in the same
direction, we have a strictly decreasing function in r on the LHS. In other words, if
there exists an interest rate satisfying this condition, then it is unique.

To show existence, note that limr→n

(
1+n
1+r

v0
)
→ ∞ and limr→∞

(
1+n
1+r

v0
)
→ 0.

Thus, as long as φ0 ∈ (0,∞), there exists an r > n to satisfy this equation.
For the second part, note that since the LHS is decreasing in r and the RHS is

decreasing in φ0, there exist and implicit function r(φ0) that is strictly increasing in
φ0. We can then take advantage of Lemma 1 stating that

1 + g = β(1 + r(φ0)),

to note that ∃φ
0

such that β(1 + r(φ0)) > 1 ∀φ0 > φ
0
.

Aggregates and Market Clearing. The no profit condition in the innovation
sector as well as market clearing for savings imply a simplified budget constraint for
households:

wt + πt = ct + ht + xt,

where πt denoted the aggregate profits. Note that wt + πt = yt − it. Furthermore,
by the research production function, we have xt = at+1/φ0. Denote by ỹ = yt/At with
similar definitions for other variables, then we can rearrange the resource constraint
to

ỹ = c̃+ ĩ+ h̃+
g

φ0

.

It is straight-forward to be shown that c̃ > 0 on the balanced growth path. Fur-
thermore, one can show that lims→∞ λt+s = 0 as λt+s =

(
1+n
1+r

)s
λt, λt > 0 and r > n.

Thus, the problem is well defined.
Finally, note that for any other balanced growth path equilibrium we have

60



λ̃t+s = λ̃t

(
1 + n

1 + r

)s

= λ̃t

(
β(1 + n)

1 + g

)s

(C.22)

By assumption (via φ0 ≥ φ
0

and xt ≥ 0), we have g ≥ 0. Since β(1 + n) < 0 and
λ̃t ≥ 0 (from ct ≥ 0), we have lims→∞ λ̃t

(
β(1+n)
1+g

)s
∈ (0,∞). Thus, all other balanced

growth path solutions are also well defined.

Main Results.

Proof of Lemma C.1. Firstly, note that Lemma C.4 shoes that there always exists
and interest rate and thus a growth rate to satisfy the research arbitrage equation. I
will focus on the case with a interest rate implying a positive growth rate here.

The derivations above further show that the balanced growth path constructed so
far features positive consumption and thus is optimal among balanced growth paths
with bounded utility.

What remains to be shown then is that the objective function is well defined on any
balanced growth path. This is straight-forward. On a BGP we have ct+s = ct(1+ g)

s,
and thus

∞∑
s=0

((1 + n)β)s ln(ct+s) = ln(ct)
∞∑
s=0

((1 + n)β)s + ln(1 + g)
∞∑
s=0

((1 + n)β)ss.

It is straight-forward to show that both terms are well defined and bounded for
any g ≥ 0. Thus, the objective function is well defined for any BGP equilibrium. This
in turn implies that the equilibrium defined in the derivations above is as a matter of
fact unique. Note that uniqueness follows from a unique r and thus g satisfying the
research arbitrage equation.

Proof of Proposition C.2. The proposition highlights the pure composition effects
from an increase in the young share. The proof simply relies on ny > no and is
omitted for brevity. Note that the output result follows from the fact that output is
proportional to the average technology adoption rate.

Proof of Proposition C.3. I will start the proof from the last point. Consider the
research arbitrage equation:
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1 + n

1 + r
αW

[(
1 + r

r − n

)
F (ny) + (sy − 1) (F (ny)− F (no))

]
=

1

φ0

.

It is straight-forward to show that an increase in sy increases the LHS holding
everything else equal, while leaving the RHS untouched. The only variable on the
LHS that can respond to keep the equality is r. As per our earlier discussion, the
LHS is strictly decreasing in r, thus we have that an increase in sy needs to be offset
by an increase in r. Furthermore, from the Euler equation, we know that an increase
in r requires an increase in g, which completes the proof for the last bullet point.

For the third bullet point, note that since 1+r
1+n

v0 is constant, but r is increasing,
we need to have v0 increasing in sy.

The first and second bullet point are tightly linked. Let ℓN = syF (ny) + (1 −
sy)F (no) and ℓE = F (ny) be the economy wide adoption rates of new and old tech-
nologies respectively. We can express the value of a new innovation as

v0 = αW

(
ℓN +

∞∑
s=1

(
1 + n

1 + r

)s

ℓE

)
From before, we know that ∂v0/∂sy > 0. Furthermore, we know that ∂r/∂sy > 0

and thus ∂ℓE/∂sy < 0. Thus, the only way to have ∂v0/∂sy > 0 is ∂ℓN/∂sy > 0. In
other words, the direct effect has to be stronger than the general equilibrium force
pushing against it. This proves the first bullet point.

Finally, the ration of investment in new technologies to investment in old tech-
nologies can be expressed as ∫

at
ψkt(a)da∫

At−1
ψkt(a)da

=
g

1 + g

ℓN

ℓE

Since both factors are increasing in sy, the overall term is as well. Note that total
investment in new technologies, atℓNK, is increasing in sy as well.

Proof of Proposition C.4. The proof for this follows the same steps as above and is
omitted for brevity. Note, however, that the induced increase in r is larger as there
are two channels at play in the innovation sector: Pure market size via population
growth and composition changes via sy.
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Social planner results. Throughout this section I will omit most of the algebraic
intermediate steps for brevity. Detailed derivations are available upon request.

Firstly, note that the social planner will set a higher capital-labor ratio compared
to the competitive solution due to the lack of monopoly pricing.

Lemma C.5. On a social planner BGP, the social planner chooses a higher capital-
labor ratio KSP compared to the competitive equilibrium, which implies a higher im-
plicit wage WSP . Furthermore, the planner chooses larger technology adoption thresh-
old nSP

y and nSP
o compared to the competitive equilibrium due to larger implicit wage/

the larger marginal product of labor.

Proof. Firstly, note that the standard first order conditions for capital imply

kt(a)

ℓt(a)
= KSP ≡

(
ψ

α

)− 1
1−α

.

Since α < 1, we have KSP > K. This is a direct implication of the monopoly fric-
tion. The monopolist reduces supply to maximize profits, while the planner chooses
the social optimum. As a direct implication of lower capital-labor ratios, we have that
the implicit wage or marginal product of labor is larger in the social planner solution

∂yt
∂ℓt(a)

= WSP ≡ (1− α)

(
ψ

α

)− α
1−α

Again, it is straight-forward to see that since α < 1, WSP >W . This is important
since it directly impacts optimal technology adoption. In particular, we have

nSP
y = WSP

(
1 +

β(1− p)

1 + g

)
and nSP

o = WSP

Note that nSP
o > no in general, while nSP

y > ny conditional on g. It remains to be
shown whether this will be the case once we endogenize g. Furthermore, note that
we can make this comparison by plugging in the Euler equation for the competitive
equilibrium in ny.

Lemma C.6. The social planner chooses a higher equilibrium growth rate gSP com-
pared to the competitive solution.
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Proof. It is useful to make a couple of definitions first. Denote by λSPt the Lagrange
multiplier on the resource constraint. Furthermore, denote by ℓN and hN the adoption
rate and associated learning costs for a new variaty and by ℓE and hE the associated
values for existing varieties. One can then show that the first order conditions for xt
boil downs to

1

φ0

=
λt+1

λt

(
WSP ℓN − hN

)
+

∞∑
s=2

λt+s

λt

(
WSP ℓE − hE

)
Note that the LHS denotes the unit costs of innovation, while the RHS denotes

the benefits discounted to current marginal utility. These benefits are the net-gains
from a new technology tomorrow plus the net-gains of an old technology starting
in two periods. Note that investment costs are already taken into account in this
formulation.

Plugging in the evolution of marginal products along the BGP, we have

1

φ0

=
(1 + n)β

1 + g

((
WSP ℓN − hN

)
+

∞∑
s=1

(
(1 + n)β

1 + g

)s (
WSP ℓE − hE

))

Define the implicit value of innovations as

v0SP =

((
WSP ℓN − hN

)
+

∞∑
s=1

(
(1 + n)β

1 + g

)s (
WSP ℓE − hE

))
.

Note that to show that gSP > g, we need to show that v0SP > v0. To see why this is
true, note that in the competitive market equilibrium, total generated resources from
innovation are v0 plus the net-present values of wages minus adoption costs. Note
that the latter are strictly positive by the first order conditions of workers. Denote
by v0P the sum of both and by v0SP (g) the social planner value associated with a
growth rate as in the competitive equilibrium. It follows that v0 < v0P ≤ v0SP (g).
The first inequality follows from positive net-income of workers and the second from
the fact that (conditional on g), the social planner can always enact the competitive
equilibrium solution. However, this implies
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1

φ0

=
(1 + n)β

1 + g
v0 <

(1 + n)β

1 + g
v0SP (g)

Note that the I’ve used the Euler equation for the expression for the competitive
solution. Finally, since (1+n)β

1+g
v0SP (g) is strictly decreasing in g, the equilibrium with

1
φ0

= (1+n)β
1+g

v0SP (g
SP ) needs to satisfy gSP > g.

Proof of Proposition C.5. The proposition follows from the results above.

Proof of Proposition C.6. To proof this result, it is convenient to rewrite the “research
arbitrage equation” in terms of the resources generated for each generation:

1
φ0

=
(

(1+n)β
1+g

)(
(1− sy)

(
F (no)WSP − ho

)
+ sy

∑∞
s=0

(
(1+n)β
1+g

)s ((
1 + (1−p)β

1+g

)
WSPF (ny)− hy

))
From the optimal technology adoption choice if follows that

F (no)WSP−ho =
∫ no

0

(no−n)dF (n) <
∫ ny

0

(ny−n)dF (n) =
(
1 +

(1− p)β

1 + g

)
WSPF (ny)−hy.

Thus, a decrease in sy pushes down the right hand side and, thus, needs to be offset
by a correspondingly lower growth rate. A decrease in n has the same effect and thus
both forces push in the same direction.

The decline in the average technology adoption rate is due to the simple compo-
sition effect that is only partly offset by the decline in g. The proof for this is similar
to the one for the competitive equilibrium and omitted here for brevity.

D Evidence on the Age-Technology Adoption Nexus

The computer has arguably been the most important “new” production technology
introduced in the 1990s and early 2000s. Earlier studies document its wide ranging
impact on firm productivity and demand for skills across industries and occupations
(Autor et al., 1998, 2003; Brynjolfsson et al., 2002; Bresnahan et al., 2002). Nonethe-
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less, computer adoption was not uniform across workers and, as documented below,
older workers’ adoption rates significantly lagged their younger counterparts.

In this section, I carefully document that older cohorts had lower adoption rates
of the computer at the workplace in the 1990s and early 2000s. The analysis expands
on Friedberg (2003) by using a longer time frame, extended set of outcome variables,
and a non-parametric regression approach controlling for a wider set of confounding
factors such as occupation and industry choice. This evidence motivates the model
developed in the subsequent section.21

D.1 Data

I investigate computer adoption at the workplace using the five CPS Computer and
Internet (CIU) Supplement waves between 1989 and 2003. (Flood et al., 2020) I limit
my analysis to responses linked to use at work to capture differences in the adoption
of productive technologies. I restrict the sample to full-time employees between the
age of 25 and 64 with at least a high school degree. This is intended to ensure that
the computer was a relevant technology for the worker and that differences in effective
labor supply are not driving my results.

I construct two measures of computer adoption by workers. Firstly, I consider a
simple indicator measure of computer use at work, which I will refer to as computer
adoption, which is based on the response to the question of whether the respondent
uses a computer at work. Secondly, I construct a proficiency index by counting the
number of tasks a worker performs with a computer at work conditional on working
with it at all. The task index ranges from 1 to 6 and is only available for workers
reporting computer use at work. The list of tasks performed with the computer that
are consistently available throughout the survey years include calendar/scheduling,
databases or spreadsheets, desktop publishing or word processing, electronic mail and
programming.22 I do not consider tasks that were not consistently asked throughout
the survey waves to ensure that the estimation is not capturing changes in the survey

21See also Weinberg (2004); Aubert et al. (2006); Meyer (2007), and Schleife (2008) for related
evidence on technology adoption across the lifecycle.

22“databases or spreadsheet" and “desktop publishing or word processing” are split into the indi-
vidual items during the first three survey waves, but combined during the latter two. I aggregate
both to have a consistent measure throughout.
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structure. I will refer to this variable as the proficiency index.
Besides the CIU specific variables, I use the age and gender of the respondent,

state of residency, educational attainment, occupation, and industry. I use occupa-
tional codes that are standardized using the 1990 definitions as provided by IPUMS.
For industry classifications, I use the code provided on David Dorn’s data page.23.
Throughout I use 5-year year-of-birth cohorts starting from 1924-28 and report the
results by transforming the cohort measure into age groups in 1989 to aid interpre-
tation. Table D.1 reports summary statistics.

Table D.1: Summary Statistics for CPS Sample

Variable Obs. Mean Std. Dev.

PC Adoption 207,998 0.581 0.493
PC Proficiency 109,280 2.784 1.703
Age 207,998 41.013 9.934
Female 207,998 0.423 0.494
College Degree 207,998 0.341 0.474
Graduate Degree 207,998 0.125 0.330
White 207,998 0.846 0.361
Black 207,998 0.106 0.308
Asian 207,998 0.038 0.191

Note: This tables reports summary statistics for the CPS CIU
sample. Observations are weighted by CPS CIU supplement
weights.

D.2 Empirical Framework

I test whether older workers are less likely to adopt the computer by estimating a
simple linear model for both outcome variables:

Yit = γa(i) + δXit + εit, (D.1)
23See https://www.ddorn.net/data.htm
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The variables of interest are cohort fixed effects γa, where a indicates a partic-
ular cohort. An observation is a worker i interviewed in year t. I include gender,
education, state, occupation, and industry fixed effects interacted with the survey
year. Adding education fixed effects accounts for differences in educational attain-
ment across cohorts, which could be a separate channel affecting technology take-up
that is not at the core of this exercise. Industry and occupational fixed effects ensure
that the regressions do not capture pure sorting.24

Note that cohort and age patterns coincide in cross-section, but differ in a panel
structure. Focusing on cohort patterns keeps the set of individuals represented by
the estimated coefficients constant and, thus, asks “Does it matter how old a subject
was when the computer was introduced?” as opposed to “Does the age of a worker
matter for current use of a computer?”. While the former is focused on the adoption
decision, the latter potentially confounds it with life-cycle patterns in technology use.

D.3 Results

Panel A of Figure D.1 plots the coefficients for technology adoption, while Tables D.3
and D.3 present the associated regression results. The pattern suggests a monotone
decreasing technology adoption rate across cohorts, especially for those aged 40-44
and older in 1989. Panel B confirms a similar pattern for computer proficiency, high-
lighting that intensive and extensive margin are reinforcing each other. Respondent
aged 40-44 in 1989 have a 7.5 percentage points (0.2 tasks) higher computer adoption
rate (proficiency index) relative to the cohort age 55-59 in 1989, which constitutes
15% (7%) of the sample mean and 14% (13%) of the sample standard deviation.

In unreported results I confirm cohort patterns as the driving force as opposed
to pure life-cycle patterns by simultaneously controlling for age. Furthermore, there
does not appear to be any catch-up of older cohorts across survey years, i.e. adoption
progresses relatively uniformly across cohorts remaining in the labor market. Finally,
note that the CPS does not record employer size or age, which might contribute to
the documented patterns if e.g. young firms have a higher technology adoption rate.

24Interestingly, the regression tables suggest that sorting appears to be working against the cohort
patterns.Older workers tend to work in occupations that use the computer more intensively, flatten-
ing the overall cohort profile. This is in line with the evidence provided in Acemoglu and Restrepo
(2018), who argue that older workers have a comparative advantage in “white-collar” occupations.
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Figure D.1: Older cohorts were slow to adopt the computer
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Notes: This figure reports the coefficient estimates for specification (D.1) for computer adop-
tion and proficiency. Regressions include sex, education, industry, occupation, and state fixed
effects interacted with survey year. Observations are weighted by CPS Computer and Internet
Use Supplement sampling weights. Standard errors are clustered at the industry level.

However, it not necessarily clear that one would want to control for firm age given
that the observed sorting of young workers to young firms might be partly driven
by (joint) technology adoption decisions (Ouimet and Zarutskie, 2014). Furthermore,
the evidence presented focuses on realized patterns, which might differ from “natural”
patterns if e.g. employers respond to low technology adoption rates by old workers
with more training (Bartel and Sicherman, 1998).

In conclusion, the evidence suggests that older workers adopted the computer at
a lower rate in line with the idea that they might be slow to pick up new technologies
in general.
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Table D.2: Regression Table for Computer Use At Work

(1) (2) (3) (4) (5)
Computer Adoption (%)

Age 10-14 in 1989 -2.076* -2.789*** -1.119 -1.169 -1.323**
(1.229) (1.065) (0.711) (0.712) (0.655)

Age 15-19 in 1989 0.751 -0.504 0.146 0.130 0.230
(0.697) (0.601) (0.431) (0.438) (0.449)

Age 20-24 in 1989 0.457 -0.279 0.080 0.070 0.202
(0.524) (0.495) (0.421) (0.418) (0.425)

Age 30-34 in 1989 1.307** 0.907* 0.048 0.014 0.041
(0.654) (0.493) (0.299) (0.295) (0.290)

Age 35-39 in 1989 1.165 -0.306 -1.269*** -1.344*** -1.357***
(1.045) (0.684) (0.375) (0.368) (0.376)

Age 40-44 in 1989 2.305 0.168 -2.253*** -2.317*** -2.322***
(1.441) (0.978) (0.447) (0.445) (0.452)

Age 45-49 in 1989 -1.157 -2.255* -4.979*** -4.985*** -4.929***
(1.689) (1.262) (0.545) (0.547) (0.526)

Age 50-54 in 1989 -4.306** -4.179*** -7.435*** -7.422*** -7.524***
(1.807) (1.464) (0.646) (0.647) (0.670)

Age 55-59 in 1989 -9.081*** -8.938*** -12.237*** -12.138*** -11.953***
(1.898) (1.582) (0.869) (0.867) (0.893)

Age 60-64 in 1989 -13.838*** -14.467*** -16.921*** -16.729*** -15.751***
(2.690) (2.249) (1.481) (1.474) (1.342)

Gender/Educ. FEs Yes Yes Yes Yes x Year
Ind./Occ. FEs Yes Yes Yes x Year
State FEs Yes Yes x Year
Obs. 207,998 207,998 207,998 207,998 207,983

Note: This table reports the regression coefficients for direct computer use at work. Outcome is an
indicator variable taking values 0 and 100 with standard deviation 49.3 and mean 58.34. Age 25-29 in
1989 is the leave out category. Regressions use CPS Computer and Internet Supplement weights and
control for year fixed effects. All standard errors clustered at industry level.

Standard Errors in Parenthesis. Significance levels: * 10% , ** 5%, *** 1%.
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Table D.3: Regression Table for Tasks Performed With Computer

(1) (2) (3) (4) (5)
Computer Proficiency

Age 10-14 in 1989 -0.082 -0.089* -0.010 -0.013 -0.025
(0.051) (0.049) (0.041) (0.042) (0.043)

Age 15-19 in 1989 -0.006 -0.035 0.009 0.008 -0.000
(0.028) (0.026) (0.019) (0.019) (0.019)

Age 20-24 in 1989 -0.017 -0.039 -0.018 -0.019 -0.021
(0.025) (0.024) (0.023) (0.024) (0.024)

Age 30-34 in 1989 -0.031 -0.025 -0.028 -0.030 -0.032
(0.024) (0.021) (0.020) (0.019) (0.020)

Age 35-39 in 1989 -0.092*** -0.111*** -0.110*** -0.111*** -0.115***
(0.026) (0.021) (0.017) (0.017) (0.018)

Age 40-44 in 1989 -0.104*** -0.135*** -0.157*** -0.159*** -0.164***
(0.031) (0.024) (0.021) (0.020) (0.021)

Age 45-49 in 1989 -0.214*** -0.220*** -0.260*** -0.258*** -0.272***
(0.037) (0.033) (0.027) (0.027) (0.026)

Age 50-54 in 1989 -0.318*** -0.305*** -0.351*** -0.354*** -0.357***
(0.045) (0.039) (0.027) (0.027) (0.027)

Age 55-59 in 1989 -0.317*** -0.318*** -0.372*** -0.371*** -0.385***
(0.046) (0.048) (0.051) (0.051) (0.049)

Age 60-64 in 1989 -0.486*** -0.485*** -0.505*** -0.505*** -0.498***
(0.086) (0.085) (0.077) (0.077) (0.079)

Gender/Educ. FEs Yes Yes Yes Yes x Year
Ind./Occ. FEs Yes Yes Yes x Year
State FEs Yes Yes x Year
Obs. 109,280 109,280 109,275 109,275 109,160

Note: This table reports the regression coefficients for tasks performed with a computer at work.
Outcome is an index variable ranging from 1 to 6 with standard deviation 1.69 and mean 2.8. Age 25-29
in 1989 is the leave out category. Regressions use CPS Computer and Internet Supplement weights and
control for year fixed effects. All standard errors clustered at industry level.

Standard Errors in Parenthesis. Significance levels: * 10% , ** 5%, *** 1%.

71


	Introduction
	Linking Aging to Innovation
	Empirical Strategy
	Data
	Measuring Local Innovation Activity
	Approach

	Results
	Local Workforce Aging and Innovation
	Innovation Demand as a Driving Force
	International Demand
	Technology Adoption and the Demand for Innovation
	Discussion and Robustness

	Conclusion
	Data
	Data construction
	Summary statistics

	Robustness
	Aging, Technology Adoption, and Growth
	Environment
	Market-clearing conditions
	Equilibrium

	Equilibrium Characterization
	Social Planner Solution
	Motivating the Investment Sector
	Derivations and Proofs

	Evidence on the Age-Technology Adoption Nexus
	Data
	Empirical Framework
	Results


