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Abstract

This paper studies the impact of firms’ market power over inventors on U.S. in-
novation and economic growth. When firms have market power in labor markets, a
situation typically referred to as monopsony, they can depress wages by hiring fewer
workers. I show that monopsony in the market for inventors can slow down economic
growth by depressing the aggregate demand for inventors and by allocating the em-
ployed inventors inefficiently. Misallocation occurs as larger firms depress their hiring
of inventors disproportionally because their size makes them more effective at depress-
ing wages. Motivated by this theoretical result, I estimate the firm-level elasticity of
inventor employment with respect to their wages, or the inventor labor supply elas-
ticity, using an instrumental variable strategy. My estimates suggest that firms face
less than perfectly elastic supply and that this elasticity is lower for firms with an
already large inventor workforce. Thus, firms appear to have monopsony power and
it is stronger for larger employers. I use this evidence to calibrate a heterogeneous
firms endogenous growth model with size-dependent monopsony power. The cali-
brated model suggests that monopsony power depresses the annual economic growth
rate in the U.S. by 0.26 percentage points or 15% and, resultingly, welfare by 6%.
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1 Introduction

Economic activity has become increasingly concentrated among large firms in the U.S.1 The
top 1% of corporate firms accounted for about 80% of revenue in 2020, up from 60% in 1960
(Kwon et al., 2023). Politicians, commentators, and academics alike have raised concerns
that rising concentration may be closely linked to a perceived decline in competition.2

Evidence for such a trend can be found, e.g., in profit rates for U.S.–listed firms, which
have risen from less than 1% in 1980 to close to 8% in 2010 (Loecker et al., 2020).

Concerns about insufficient competition increasingly include the power that large firms
might have to suppress the wages of their employees, commonly referred to as monopsony
power.3 While monopsony was typically considered most prevalent for “low-skilled” workers
in rural communities, e.g., for miners in towns with only few coal mines in close proximity,
a growing body of evidence suggests that it is also prevalent for “high-skilled” workers
(Goolsbee and Syverson, 2023; Seegmiller, 2023). One interpretation of these novel findings
focuses on a perhaps previously less emphasized source of monopsony power: human capital
specificity. For example, registered nurses provide invaluable services to hospitals, but their
significant human capital—as indicated by the required graduate degree—is only valuable
within the profession. Resultingly, hospitals can suppress nurses’ compensation in face of
limited competition for their services (Prager and Schmitt, 2021).

In this paper, I study the macroeconomic consequences of monopsony power over in-
ventors. Monopsony power over this type of high-skilled labor may be both particularly
concerning and prevalent, since the output of inventors, i.e., inventions, is considered one of
the key drivers of long-run economic growth and welfare, and their skills tend to be highly
specialized. Indeed, anecdotal evidence suggests that Tech companies are aware of their
potential market power over these workers and colluded to suppress their wages in the past.
For example, large Tech firms had agreements not to poach each others’ engineers in order
to keep their wages low (Edwards, 2014). Apple, Adobe, Intel, and Google were fined by
the Department of Justice in 2010 for these non-poaching agreements, while Microsoft only
recently announced that it would not enforce non-compete agreements (of Justice, 2010;
Reuters, 2022). Similar cases have emerged in other industries (Kass et al., 2022).

1Rising concentration at the national level was first documented by Autor et al. (2020). There is an
ongoing debate on the origins and impact thereof (Grullon et al., 2019; Rossi-Hansberg et al., 2019; Berger
et al., 2022).

2Concerns about rising concentration and declining competition are raised, e.g., in Wu (2018); Philippon
(2019); Meagher (2020) and Klobuchar (2021).

3For example, labor markets are explicitly mentioned in the White House’s 2021 executive order on
“Promoting Competition in the American Economy.” (House, 2021)
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This paper estimates that monopsony power in the market for corporate inventors has
a sizable negative impact on innovation and economic growth. Empirically, I find that
especially firms with large inventor workforce appear to have significant monopsony power,
while smaller firms face more competitive conditions. Interpreted through the lens of
a quantitative endogenous growth model, this evidence suggests that monopsony power
might depress aggregate inventor employment and lead to an inefficient allocation of in-
ventors across firms. Misallocation occurs through a size-dependent monopsony channel
that reduces inventor employment disproportionally for larger employers. Quantitatively, I
find that monopsony power over inventors reduces long-run economic growth by 0.26 p.p.
leading to welfare loss of 6% compared to a world in which firms act as price takers.

I reach these conclusion in three steps. First, I introduce monopsony power over inven-
tors into an endogenous growth model with heterogeneous firms. Inventors choose their
employer based on idiosyncratic preference shocks and wages offered as in Card et al.
(2018). Resultingly, firms face an upwards sloping labor supply curve and can lower wages
marginally without loosing their entire inventor workforce, as would be the case in the
standard competitive model. Similar to Berger et al. (2022), I allow for size-dependent
monopsony power such that large employers of corporate inventors may have more power
over them. Monopsony power depresses the aggregate demand for corporate inventors,
resulting in lower R&D employment—as long as their aggregate supply is not perfectly
inelastic—and, therefore, lower economic growth. Size-dependence of monopsony power
further induces misallocation across firms as larger firms depress their demand for corpo-
rate inventors more than smaller firms, which leads to an additional drag on innovation
and economic growth.

In the second step, I present novel evidence on firms’ monopsony power over corporate
inventors in the U.S. I estimate the average firm-level elasticity of inventor wages with
respect to their employment, i.e., their inverse labor supply elasticity, in a sample of U.S.-
listed firms by regressing inventor wage growth on employment growth. I construct inventor
employment and their wages by combining firms’ financial statements with their patent
records. The literature has long recognized the potential identification challenges in this
setup (Manning, 2011). Most importantly, labor supply shocks, such as preference shocks
over firms, can lead to a downwards bias in the estimated elasticity. In particular, a positive
labor supply shock reduces the wage a firm needs to pay in order to maintain a given level
of employment, which is informative about the wage level of a firm, but not its local labor
supply elasticity. I propose to address this identification challenge by using stock market
returns as an instrument for shocks to firms’ labor demand as in Seegmiller (2023). The
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instrument is relevant if stock market returns partly reflect shocks that induce the firm to
expand, such as demand shocks for its products. It satisfies the exclusion restriction if there
is no link between stock market returns and inventor wages other than their employment.

My estimates suggests that monopsony power is both sizable and size-dependent. I
estimate an average inverse labor supply elasticity of 0.96, which implies that a firm would
lose about 10.3% of its inventors if it were to reduce their wages by 10%. For comparison,
Seegmiller (2023) estimates an elasticity of 0.82 for high-skilled workers, while Yeh et
al. (2022) estimate an average elasticity of 0.68 for nonproduction workers and Berger
et al. (2022) estimate an elasticity of 0.33 for all workers in firms with a 10% market
share in the local labor market. Importantly, I find that firms with above median R&D
workforce face a larger inverse labor supply elasticity of 1.7 compared to 0.4 for smaller
firms. Thus, firms with above median inventor employment would lose only about 6.0%
of their R&D workforce if they were to reduce their wages by 10%, while below median
R&D employment firm would lose 24.4%. Similarly, Yeh et al. (2022), Berger et al. (2022),
and Seegmiller (2023) find that larger employers face less elastic labor supply and, thus,
have more monopsony power. For example, Seegmiller (2023) estimates that high-skilled
workers in below median size firms have an inverse labor supply elasticity of 0.58 compared
to an elasticity of 0.94 for above median sized firms. I confirm that my estimates are not
driven by a changing composition of corporate researcher quality nor pre-trends.

In the final step, I extend the model introduced in the first step along several dimensions
and calibrate it using the evidence on the labor supply elasticity of inventors. The calibrated
model can then be used as a laboratory to study the impact of monopsony for in the market
for corporate inventors on innovation and economic growth. I introduce three extensions.
First, I allow for non-listed firms in the R&D sector. These firms tend to be much smaller
in the data and, thus, may mitigate some of the monopsony power of larger firms. Second,
I account for stock-based compensation of inventors, which may constitute a violation of
the exclusion restriction in my estimation by providing a direct link between wages and
the stock market performance of a firm. Lastly, I allow for non-labor inputs into the R&D
production process, which limit the incentives of firms to downsize by providing a substitute
for inventors. I calibrate the extended model using a combination of external calibration
with standard parameters and moment matching. The calibrated model matches key data
moments including the inventor labor supply elasticity estimates.

The calibrated model suggests that monopsony power over inventors slows down inno-
vation and economic growth significantly due to a combination of insufficient R&D em-
ployment and misallocation of inventors across firms. Forcing firms to be price takers in
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the market for inventors increases economic growth from 1.50% to 1.76% per year—a 6%
welfare improvement. The acceleration in economic growth is driven both by a 13% rise
in R&D employment as well as a significant improvement in aggregate R&D productivity
due to more productive allocation of inventors. Holding R&D employment fixed, the im-
provement in the allocation of inventors alone accelerates economic growth rate by 15 p.p.,
highlighting the importance of the misallocation channel of size-dependent monopsony. I
conclude by highlighting three forces that might limit the cost of monopsony: wage dis-
crimination among workers, firm entry, and the presence of socially inefficient differences
in firms’ ability to benefit from their inventions.

Literature. This paper is closely connected to three strands of the literature. First, I
contribute to the literature on monopsony power by providing novel evidence thereof in
the market of corporate inventors and documenting that monopsony power appears to be
increasing with firms’ inventor employment. The literature documents that monopsony
power is pervasive in the production sector and stronger for larger employers (Azar et al.,
2020; Arnold, 2021; Kroft et al., 2021; Lamadon et al., 2022; Yeh et al., 2022). Furthermore,
there is growing evidence of monopsony power in labor markets for “high-skilled” workers
(Prager and Schmitt, 2021; Goolsbee and Syverson, 2023; Seegmiller, 2023). I complement
this literature by documenting monopsony power over an important group of skilled work-
ers: corporate inventors. My model builds on the literature microfounding monopsony
power via preferences over employers (Card et al., 2018). An alternative approach focuses
on a lack of outside options for workers as a microfoundation of monopsony power (Shi,
2023; Schubert et al., 2023; Bagga, 2023). I complement the theoretical literature by intro-
ducing preference-based monopsony power into a general equilibrium endogenous growth
model with heterogeneous firms. Relatedly, Berger et al. (2022) introduce a structural
general equilibrium model of the production with monopsony power.

Second, I contribute to the literature on resource allocation in the R&D sector. The
existing literature focuses primarily on the misalignment of private and public marginal
benefits of R&D investment, which can also lead to misallocation, rather than misalign-
ment of marginal costs as in my case. The literature has highlighted a range of potential
mechanisms for such misalignment including knowledge and business stealing externalities,
and differences in firms’ ability to profit from their inventions or protect their intellectual
property. Romer (1990) and Aghion and Howitt (1992) first argued that this misalignment
can lead to under investment in R&D, while the more recent literature is focused on hetero-
geneous misalignment across firms that leads to misallocation of R&D resources (Acemoglu
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et al., 2018; Cavenaile et al., 2021; Mezzanotti, 2021; Aghion et al., 2023; König et al., 2022;
Terry, 2023). I complement this literature by instead focusing on a misalignment in the
marginal costs perceived by the firm and a planner due to monopsony power.4 Interest-
ingly, this mechanisms leads to the conclusion that large firms might not do enough R&D
relative to small firms, while the literature typically finds that they might do too much
(Akcigit et al., 2022; Manera, 2022; de Ridder, 2023). These findings suggests that both
types of mechanisms might partly offset each other in practice. My paper is also related
to the literature on talent (mis-)allocation in the R&D sector (Akcigit et al., 2020; Prato,
2022; Celik, 2023). I complement this literature by focusing on market power as a source
of talent misallocation.

Finally, my paper falls within the larger literature on the macroeconomic implications
of factor misallocation, which has mostly focused on the production sector. Restuccia and
Rogerson (2008) and Hsieh and Klenow (2009) first argued that misallocation of production
factors may be significant and could have a large impact on productivity and output. The
subsequent literature investigated a range of potential sources of misallocation including
financial frictions, government intervention, information frictions, and adjustment costs
(Asker et al., 2014; Midrigan and Xu, 2014; David et al., 2016, 2022). More recently, the
literature has (re-)considered market power in product and labor markets as a significant
source of resource misallocation in the production sector that may significantly reduce
aggregate productivity and depress output levels (Loecker et al., 2020; Berger et al., 2022).
I contribute to this literature by focusing on misallocation in the R&D sector, which may
lead to slower innovation and economic growth rather than lower output levels. This focus
coincides with Lehr (2023), who studies misallocation in the R&D sector in general. This
paper is complementary as it studies and provides evidence for a particular mechanism of
misallocation in the R&D sector: monopsony power.

Organization. The remainder of this paper is structured as follows: Section 2 introduces
a heterogeneous firms model with size-dependent monopsony power and derives the key im-
plications thereof for economic growth. Section 3 provides empirical evidence of monopsony
power in the market for inventors. Section 4 extends the model, calibrates it to match the
empirical evidence, and presents counterfactuals. Section 5 discusses additional factors and
Section 6 concludes.

4A focus on marginal cost differences also coincides with the larger literature on the impact of financial
frictions on R&D investment (Brown et al., 2009; Howell, 2017; Ewens et al., 2022).
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2 A Growth Model with Monopsony over Inventors

This section introduces preference-based monopsony power as in Card et al. (2018) into a
general equilibrium growth model in the tradition of Romer (1990) to investigate the po-
tential impact of monopsony power on innovation and economic growth. Preference-based
monopsony builds on the idea that firms are imperfect substitutes from the perspective of
a worker due to e.g. differential amenities, management styles, company cultures or vi-
sions. Resultingly, firms face an upwards sloping labor supply curve starting with workers
who have a preference for the firm, and thus willing to work at low wages, up to workers
having a preference against the firms, and thus requiring a high, compensating wage. The
key assumption to generate monopsony power is then an inability on the firms’ part to
implement discriminatory wages across its employees, which could be due to information
asymmetries, i.e., the firm does not know how much each employee enjoys to work for it,
or fairness considerations, i.e., wage discrimination is perceived as unfair with resulting
consequences for morale and productivity. Resultingly, an expanding firm needs to raise
the wages of all workers to attract new workers at the margin raising marginal costs per-
ceived by the firm above the costs of hiring the new worker only. This mechanism thus
reduces firms incentives to expand due to rising inframarginal wages and, hence, leads to
an insufficiently low demand for workers. The following model formalizes these ideas for
the case of R&D workers and traces their impact on growth and innovation in a general
equilibrium framework, which forms the basis of the subsequent empirical analysis.

2.1 Model Description and Competitive Equilibrium

Time is discrete and indexed by t. The economy is populated by a representative household
and has a final goods and intermediate production sector. The latter consists of a unit mass
of firms that own the production rights to their intermediates and invest in innovation to
create more thereof. I introduce the household next, followed by a description of the
production and innovation sectors.

Workers and Labor Markets A representative household owns all firms and provides
labor in form of production workers LP,t and research workers {ℓkt} to firms k ∈ [0, 1]. The
income from production workers, WP,t, research workers WR,kt, bond holdings Rt ·Bt, and
firm ownership Πt can either be consumed Ct or invested in a riskless bond Bt+1. Flow
utility takes the Balanced Growth Preferences structure and is discounted at rate β (King
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et al., 1988). The household solves

max
{Ct,LP,t,{ℓkt}k∈[0,1]}

∞∑
t=0

βt · (Ct · v(LP,t, LR,t))
1−σ − 1

1− σ

with v(LP,t, LR,t) = exp
(
− ϵ

1 + ϵ

(
αP

(
LP,t
αP

) 1+ϵ
ϵ

+ αR

(
LR,t
αR

) 1+ϵ
ϵ

))
,

LR,t =

(
ℓ+

1

1 + ξ

)−1

·

(∫ 1

0

ℓkt ·

(
ℓ+

1

1 + ξ

(
ℓkt
LR,t

)ξ)
dk

)
,

and Bt+1 + Ct = Rt · Bt +WP,t · LP,t +
∫ 1

0

WR,kt · ℓkt · dk +Πt.

(1)

A couple of remarks are in order. First, the household has convex labor disutility for
production and research work, LP,t and LR,t respectively. Importantly, both types of work
enter separately such that the household does substitutes between them. This assumption
captures the idea that production and research labor are very different tasks requiring very
different skills or training and, in practice, might be executed by different workers. Here,
ϵ ≥ 0 is the labor supply elasticity and the disutility shifters, αP and αR, control the labor
supply level such that larger values imply more supply at a given wage.

Second, research work is an aggregate over the supply to individual firms, which cap-
tures the idea that firms might be imperfect substitutes from the perspective of workers.
Intuitively, being a researcher for Apple or Ford Motors might require very different skills
such that workers cannot easily move between both firms. The aggregator is governed by
two parameters {ξ, ℓ̄} that serve different purposes. The first parameter ξ makes firm-
specific labor supply less elastic for all firms. The second parameter ℓ̄ makes labor supply
log-convex such that it becomes less elastic the larger the firm is relative to the overall
supply. Note that if ℓ̄ = 0, the aggregator becomes the CES type and with ξ = 0 we have
a standard linear aggregator.

Finally, the budget constraint reflects that different R&D firms might have to pay
different wages WR,kt to attract the desired number of R&D workers. It also imposes
that firms cannot differentiate among inventors and have to pay a single firm-level wage.
This assumption is crucial to generating monopsony power in this model. I discuss the
implication of price discrimination in the discussion section.
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Final Production. A representative firm hires production labor LP,t at wage WP,t and
buys intermediate inputs {xjt}j∈Qt at price pjt to produce output Yt. The firm solves

max
LP,t,{xjt}j∈Qt

Yt −WP,t · LP,t −
∫
Qt

pjt · xjtdj s.t. Yt = L1−α
P,t

∫
Qt

z1−αjt · xαjtdj, (2)

where zjt is a demand-shifter.

Intermediate good producers. Intermediate goods in the economy are protected by
patents such that they can only be produced by their proprietor. There is a unit mass
of intermediate good firms, which act as proprietors, with constant unit cost ψ. For each
intermediate good, the proprietor solves

πjt = max
xjt

pjt · xjt − ψ · xjt (3)

subject to the product demand curve from the final production sector.

Innovation Each intermediate goods firm can hire ℓkt research workers to produce new
blueprints Mkt+1 in the subsequent period subject to wage cost WR,kt according to produc-
tion function

Mkt+1 = Qt · Ak · ℓγkt, (4)

where Qt =
∫ Qt

0
zkt ·dk is the quality adjusted mass of products, which is also the aggregate

state of technology, and Ak is a firm-specific productivity shifter.
New blueprints are added to their stock of protected products such that the quality

adjusted mass of inventions Qkt evolves according to

Qkt+1 =Mkt+1 · zkt+1 +Qkt. (5)

The product-specific demand-shifter is determined at the point of invention and is
identical to all products invented by the same firm in the same period.5 Firms’ demand-
shifter is persistent and evolves according to

ln zkt+1 = (1− ρ) · µ+ ρ · ln zkt + σ · νkt+1 with νkt+1 ∼ N(0, 1). (6)
5Alternatively, one could assume that demand for all products fluctuates concurrently at the firm level.

Such an assumption will affect the precise algebra of the model, but not the qualitative or quantitative
properties of the model with respect to the innovation sector.
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Intermediate firms hire researchers to maximize their value

Vt(Qkt, zkt) = max
ℓkt

{∫
j∈Qkt

πjt · dj −Wkt · ℓkt +R−1
t+1 · Et [Vt+1(zkt+1, Qkt+1)|zkt]

}
(7)

subject to the labor supply curve and the evolution of their portfolio of inventions.

Growth. The aggregate state of technology Qt =
∫ 1

0
Qkt · dk evolves according to

Qt+1 = Qt +

∫ 1

0

Mkt+1 · zkt+1 · dk. (8)

The private equilibrium definition is standard and formalized in Definition 1.

Definition 1 (Competitive Balanced Growth Path Equilibrium). A sequence of quantities
and prices such that (a) firms maximize profits and firm value, (b) markets clear, (c)
quantities grow at a constant rate.

2.2 Planner’s Problem

To study optimal policy, it is useful to introduce the planner problem. The planner chooses
quantities to maximize expected utility:

max Et
∞∑
t=0

βt · (Ct · v(LP,t, LR,t))
1−σ − 1

1− σ

with v(LP,t, LR,t) = exp
(
− ϵ

1 + ϵ

(
αP

(
LP,t
αP

) 1+ϵ
ϵ

+ αR

(
LR,t
αR

) 1+ϵ
ϵ

))
,

LR,t =

(
ℓ+

1

1 + ξ

)−1

·

(∫ 1

0

ℓkt ·

(
ℓ+

1

1 + ξ

(
ℓkt
LR,t

)ξ)
dk

)
,

Ct = L1−α
P,t

∫
Qt

z1−αjt · xαjt · dj −
∫
Qt

ψ · xkt · dk,

Qt+1 =

∫ 1

0

Mkt+1 · zkt+1 · dk +Qt and Mkt+1 = Qt · Ak · ℓγkt

(9)

subject to the law of motion for firm-level R&D productivities. The associated equilibrium
definition is provided in Definition 2.

Definition 2 (Planner Balanced Growth Path Equilibrium). A sequence of quantities that
solve the planner problem (9) and productivity grows at a constant rate.
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2.3 Monopsony in R&D and Growth

The characteristic feature of monopsony power is that firms’ wages respond to their demand
for labor and that firms take this effect into account. Proposition 1 highlights the first
property in the model by showing that firms’ R&D wages respond to their demand for
R&D workers.6 Furthermore, this sensitivity is stronger for firms that are already larger
in the case of log-concave labor supply with ℓ̄ > 0. Resultingly, firms’ demand for R&D
workers becomes less sensitive to R&D productivity shocks or targeted subsidies as they
get larger if ℓ̄ > 0.

How do these properties compare to the allocation in a planner equilibrium? It turns
out that the sensitivities to R&D productivity or subsidies coincides in the planner and
competitive equilibrium as long as monopsony power is log-linear, i.e., ℓ̄ = 0. With log-
concave R&D labor supply, the demand for R&D workers is less sensitive in the competitive
equilibrium as the sensitivity of wages changes alongside the wages or marginal products
themselves, which is only taken into account by profit maximizing firms.

Proposition 1 (Wages in the R&D sector). Consider an R&D subsidy (1 − τkt). The
elasticity of the firm’s R&D wage with respect to a change in R&D workers induced by a
small change in the subsidy rate is given by

∂ lnWR,kt

∂ ln ℓkt

∣∣∣∣∣
∆τkt

= ξ · (ℓkt/LR,t)
ξ

ℓ̄+ (ℓkt/LR,t)ξ
, (10)

which is positive if ξ > 0 and, in addition, increasing in the firm’s relative R&D employ-
ment if ℓ̄ > 0. Furthermore, firms’ equilibrium R&D employment becomes less sensitive
to productivity shocks with monopsony power, ξ > 0, and particularly so for larger firms
if ℓ̄ > 0 as well. Relative to a planner equilibrium, firms’ R&D employment is equally
sensitive to productivity shocks in the competitive equilibrium as long as ℓ̄ = 0 and becomes
less sensitive in the case of ℓ̄ > 0 as inventor employment increases.

So, what happens to allocation in equilibrium in an economy with monopsony power.
Proposition 2 highlights two effects. Firstly, monopsony power lowers the equilibrium
R&D effort vis-a-vis a world without it as long as the aggregate supply of inventors is
not perfectly inelastic. Even in absence of monopsony power, the competitive equilibrium
features insufficient R&D due to an insufficient market size coming from the monopoly
distorting in the product market and intertemporal knowledge externalities. Monopsony

6Derivations and proofs are provided in Appendix A.
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power thus further increases this gap. Secondly, with log-concave labor supply, the relative
allocation of R&D workers in the competitive equilibrium is skewed towards small firms as
the former take advantage of their higher monopsony power by reducing their demand for
R&D workers. Thus, in this case, not only the aggregate level of R&D employment is too
low, but R&D workers are also not optimally allocated across firms from the perspective
of a planner, which further reduces economic growth. I refer to the latter as misallocation.

Proposition 2 (Allocative efficiency in the R&D sector). Suppose labor market power is
homogeneous, i.e. ℓ̄ = 0, then there is insufficient demand for R&D in the competitive
equilibrium, however, the relative allocation of R&D workers across firms is efficient. The
efficient equilibrium can be achieved by a combination of untargeted output and R&D sub-
sidies. Conversely, suppose that the aggregate level of R&D workers is fixed, i.e. ϵ → 0,
then the demand for R&D workers is efficient as long as labor market power is homoge-
neous. With differences in R&D labor market power, the allocation of R&D workers in the
competitive equilibrium is tilted towards smaller firms. An efficient equilibrium can only be
achieved by targeted R&D subsidies.

What are the policy implications? In the case of common monopsony power, the planner
equilibrium can be achieved by a general subsidy to firms’ R&D activity or, alternatively,
by subsidizing R&D workers. Such a subsidy becomes ever more important the more elastic
the supply of R&D workers in the economy. In the case of heterogeneous monopsony power,
general R&D subsidies are insufficient and targeted interventions become necessary. The
optimal (marginal) R&D subsidy rate is larger for firms hiring more inventors.

Optimal policy under size-dependent monopsony power suggests that large employers
of inventors should hire even more of them and, thus, appear to invest too little into
R&D. This result is in stark contrast to some recent contributions in the literature that
generally argue to large firms might do too much R&D relative to small firms (Aghion et
al., 2022; de Ridder, 2023). Both views are easily reconciled when considering the source of
heterogeneity innovation activity. In my model, heterogeneity is driven by real productivity
differences across firms that a planner would also consider when allocating R&D workers.
In contrast, some of the heterogeneity in R&D activity across firms in the aforementioned
papers is driven by heterogeneous abilities to profit from innovation that lead large firms
to do too much R&D relative to a planner, who would not take into account firms’ ability
to charge higher markups when deciding on the optimal allocation of R&D resources. In
practice, both forces might be partly offsetting with ambiguous net-effects. I focus on
quantifying the effect of monopsony power only in this paper.
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2.4 The Tell-Tale Signs of (Size-dependent) Monopsony Power

Before providing evidence on monopsony power in R&D markets, I want to point out a
caveat for any potential empirical investigation and highlight a model prediction that can
act as tell-tale sign for monopsony power.

First, Proposition 1 highlights that monopsony power materializes in form of a finite
labor supply elasticity in response to firm-specific demand shocks. Proposition 3 further
emphasizes the necessity of using firm-level shocks for identification. In particular, the
equilibrium response of wages to aggregate shocks, such as an economy-wide R&D subsidy,
is independent of firms’ market power and depends only on the aggregate labor supply
elasticity for R&D workers. Thus, it is impossible to estimate the extent of monopsony
power in this model when considering aggregate shocks. Direct estimates of the labor
supply elasticity can only be recovered with firm-specific inventor demand shocks.

Proposition 3. The elasticity of firms’ inventor wages with respect to their employment
as induced by a small change in the general R&D subsidy rate 1− τt is given by

∂ lnWR,kt

∂ ln ℓkt

∣∣∣∣∣
∆τt

=
1

ϵ
, (11)

which is constant across firms regardless of their monopsony power. Furthermore, under
such a policy change, the relative allocation of R&D workers ℓkt/LR,t remains constant.

Second, there are tell-tale signs of monopsony in the model that do not require esti-
mating the labor supply elasticity. In particular, under monopsony power, the average
product of an R&D worker, expected or realized, is an increasing function of firms’ R&D
employment as shown in Proposition 4. Furthermore, the R&D return, or the ratio of R&D
output to its costs, is an increasing function of R&D employment iff monopsony power is
increasing in R&D employment. Thus, finding a positive correlation between R&D returns
and R&D employment is a potentially strong signal of size-dependent monopsony power.

Proposition 4. Let the expected R&D return of a firm be the ratio of the expected value
created from innovation to the total cost. Its equilibrium value is given by

Expected R&D Returnkt ≡
Mkt+1 · Et[zkt+1|zkt] · π̃t+1/Rt+1

WR,kt · ℓkt
=

1

γ
· (1 + 1/ϵkt). (12)

Resultingly, it is constant across firms iff ℓ̄ = 0 and increasing in ℓkt for ℓkt > 0. The
realized R&D returns is increasing in ℓkt iff ℓ̄ > 0. Similarly, the expected average product
of an R&D worker is increasing in ℓkt if ξ > 0 and ℓ̄ ≥ 0, and constant otherwise.
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3 Evidence

This section provides evidence on monopsony power in the market for inventors in the U.S.
I first describe how I measure key variables in my estimation, including R&D employment
and wages, before discussing the estimation strategy and presenting the estimates.

3.1 Data

My data combine information on the financial performance and innovation activity of US
listed firms. I obtain financial data from WRDS Compustat, who collect and harmonize
them based on mandatory filings by the company. The data reach back to 1959 and
their availability is tied to the company’s listing status. Variables of interest include R&D
expenditure (xrd), employment (emp), and stock market returns. I combine this data with
information on firms’ patenting activity using the crosswalk between firms and patents
developed in Kogan et al. (2017). The patent data from Kogan et al. (2017) and the
USPTO’s Patentsview database includes information on firms’ granted patents, including
application date and technology classification, and the inventors that contributed to the
patent.

Patents are arguably the most direct measure of R&D output available to researchers. A
patent captures an invention that the issuing patent office, here the USPTO, deemed new
and useful, and grants the owner exclusive rights to the use of the invention described
therein. These rights give firms strong incentives to patent inventions, making newly
granted patents a prime source for information on firms’ innovation activity. Nonetheless,
it is well known that not all inventions are patented such that patent-based information
may be incomplete (Cohen et al., 2000; Mezzanotti and Simcoe, 2023).

The primary variables of interest when investigating monopsony power are employment
and wages. I measure inventor employment using patent records. I link inventors across
patents using the USPTO’s disambiguation and assign them to firms based on whether
they are listed on a firm’s newly-granted patents within the relevant 5-year window, where
the patent is recorded in its application year. I assign the firm a full time equivalent share
of the inventor based on its share in the inventor’s new patent portfolio and aggregate
to the firm-level by summing over all inventors. This measure may be incomplete, e.g.,
because not all active researchers at the firm are listed on a patent within a given period,
however, it provides a readily available measure of innovators contributing to the firms’
patent output. Using a 5-year window is intended to reduce measurement error.

I measure inventor wages as the ratio of R&D expenditure over a 5-year window divided
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by inventor employment over the same window. This measure suffers from three potential
concerns. First, not all R&D expenditure is on labor inputs as R&D often also requires
material inputs and machinery. NSF statistics suggest that R&D is very labor intensive
with a labor share of costs of 79% in 2021.7 Thus, we might expect some measurement
error from this misspecification, but it is likely small as I discuss in Section 4. Second, my
measure of inventors might be incomplete as discussed above, which will add measurement
error. Third, the implicit assumption when measuring inventors is that R&D projects result
in a patent application within a given year. In practice, there might be research projects
with larger time horizons, which could results in a misalignment between R&D expenditure
and recorded patents that shows up as measurement error. My analysis, thus, needs to
take into account potential measurement error in R&D wages.

As discussed in the previous section, the R&D return can be informative about monop-
sony power. I measure it as the ratio of valuations of new patent to previous year’s R&D
expenditure at the 5-year horizon:

R&D Returnit ≡
∑4

s=0 Patent Valuationsit+s∑4
s=0 R&D Expenditureit−1+s

. (13)

I also construct measures of firms’ dominance in their technology markets and inventor
specialization, which are described in the text and Appendix B.

I restrict the sample to 1975-2014 and drop firms with consistently low R&D expenditure
(less than 2.5m 2012 USD per year), low patenting (less than 2.5 patents per year) or less
than 5 sample years. The final sample has about 15,000 observations for 900 firms and
covers more than 80% of R&D expenditure in Compustat and patent valuations in Kogan
et al. (2017) for the 1975-2014 period as well as 40% of the R&D recorded in BEA accounts.
See Appendix B for further data details.

3.2 Estimation Approach

The inverse labor supply elasticity for inventors determines the extent of monopsony power
in the model presented in the previous section and is, thus, key to understanding its impact
on the innovation economy. The elasticity can be estimated by regressing log changes

7I calculate this figure using Table 10 in the NSF’s Business Enterprise Research and Development
Survey statistics for 2019. In my calculations I exclude “other” R&D expenditure and “other purchased
services" and add 1/3 to the expenditure on depreciation to capture cost of capital assuming a 5% interest
rate and 15% depreciation rate. Total R&D expenditure on labor includes “salaries, wages, and fringe
benefits," "stock-based compensation," and "temporary staffing." The labor share in all R&D expenditure
is 67%, while the labor share for adjusted R&D expenditure is 79%.
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in the inventor wage on changes in log inventor employment as shown in equation (14)
(Manning, 2003). The coefficient on the changes in inventor employment identifies the
average inverse labor supply elasticity if the error term is uncorrelated with changes in
inventor employment.

∆ ln Inventor Wageit = ϵ̄×∆ ln Inventorsit + αj(i)×t + εit (14)

Estimating this equation in OLS can lead to biased estimates in the presence of labor
supply shocks, which simultaneously affect wages and employment, and, thereby, violate
the exclusion restriction. For example, if workers exogenously become more attracted to a
firm, we might expect that it is can lower wages, while hiring more workers. However, this
variation does not identify the response of wages if the firm wanted to expand employment
in absence of such a shock. In short, supply shocks confound the estimation of a supply
elasticity, and we, thus, need demand shocks for identification.

To address this concern, I propose to use stock market returns as an instrument for
inventor employment, which follows ?’s identification strategy for the overall labor supply
elasticity. The instrument is relevant if stock market returns reflect changes in firm pro-
ductivity or consumer demand that incentivize it to expand production. Expansion then
increases the market size for new products, which gives the firms an incentive to expand
R&D as well. The exclusion restriction requires that stock market returns do not affect
inventor wages growth other than through their impact inventors employment growth.

I connect the inverse labor supply elasticity to inventor employment with an interaction
term for firms with above median R&D employment in the previous year. Under size-
dependent monopsony power, we expect a positive coefficient on the interaction term, as
firms with large inventor employment face a high inverse labor supply elasticity. I follow
a similar approach for above and below median R&D return, which is also linked to the
inventor supply elasticity as discussed in the previous section.

∆ ln Inv. Wageit = ϵl ×∆ ln Inv.it
+ (ϵh − ϵl)×∆ ln Inv.it × {Above Median Inventors}it
+ β{Above Median Inventors}it + αj(i)×t + εit

(15)

The exclusion restriction for the interaction terms requires that the growth rate of R&D
wages is not linked differentially to stock returns for larger firms other than through their
impact on R&D employment growth.

There are several potential identification challenges. First, stock market returns may
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partly reflect labor supply shocks if they increase firm value.8 The estimated elasticity
may then be downwards biased as supply shocks, such as preference shocks, lower wages
and raise employment. These shocks may also bias the interaction coefficient, e.g., if
labor supply shocks are more important for firms with larger R&D employment.9 Second,
incentive pay for researchers, e.g., via granted stock options or payment in shares, may lead
to a violation of the exclusion restriction by inducing a correlation between returns and
inventor wages unrelated to inventor employment.10 However, this is only a concern if the
incentive pay is structured such that stock market returns affect the level of compensation.
11 Incentive pay could also bias estimate of the interaction regression, e.g., if firms with
larger R&D employment rely more on it. Finally, the measured R&D wages include non-
labor expenditure and, thus, wage growth may measured with error. Such measurement
error biases the regressions if it is systematically related to the instrument.12 I consider this
threat together and incentive pay explicitly when quantifying the aggregate implications of
R&D monopsony power.

3.3 Results

I report the first stage results in Appendix Table C.1. In short, the first stage looks as
expected with a positive correlation between inventor employment growth and stock market
returns. The F-statistics indicate a comfortably high level of power for my instruments.

My estimation results, as reported in Table 1, reveal three novel findings. First, the
estimated inverse labor supply elasticity is positive and significant. A 10% increase in
employment requires 9.6% higher wages. For comparison, ? estimates an elasticity of 0.84
for high-skilled workers using LEHD data on wages and employment, which is well within
the confidence interval of my estimate. The estimated elasticity suggests that workers only
receive half their marginal product in wages. Second, firms with a large inventor workforce
face less elastic inventor supply. A firm with above median inventors faces an elasticity of
0.410+1.245 ≈ 1.7 implying that a 10% increase in employment requires 17% larger wages.

8Importantly, these supply shocks need to apply to the market for inventors rather than other workers.
A shock that lowers required wages for the non-inventor workforce without affecting required wages of
inventors does not violate the exclusion restriction.

9For example, larger employers might rely more on their reputation to hire and retain inventors, which
may expose them more to preference stocks.

10About 12% of total labor compensation in R&D is stock-related (NSF BERDS, 2019).
11Alternatively, stock-based compensation is not a concern if it merely affect how compensation is paid

out, e.g., 15% in stocks, rather than the level of compensation. I discuss alternative models of such bonus
payments in Appendix A.2.

12I discuss this issue in detail in Appendix A.3. The bias depends, among other things, on the elasticity
of substitution between materials and inventors.
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These estimates suggest that inventors working for large innovative firms receive 37% of
their marginal product in wages, while R&D workers at small innovative firms receive 71%
thereof. Note, however, that these estimates do not imply that wage levels are larger for
smaller R&D employers as marginal products may differ substantially. Third, column (3)
reveals that firms with large R&D return also face less elastic inventor supply, which is
predicted by the theory developed in the previous section. Differences compared to those
for inventor employment, which may reflect that R&D returns reflect other frictions apart
from differences in the R&D supply elasticity.

Table 1: Inventor Inverse Labor Elasticity Estimates

(1) (2) (3)
∆ ln Inventor Wageit

∆ ln Inventors 0.963*** 0.410** 0.817**
(0.198) (0.203) (0.325)

— × {Top 50% Inventors} 1.245***
(0.446)

— × {Top 50% R&D Return} 1.079**
(0.512)

Interaction term ✓ ✓
First stage F stat. (Main) 96 48 39
First stage F stat. (Inter.) 71 60
Observations 14,834 14,834 14,834

Note: This reports the second stage results for the main specification. All regressions control for
NAICS3 × year fixed effects. Standard errors clustered at the NAICS6 level.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.

I consider several robustness exercises. First, one concern might be that expanding
firms do not only hire more, but also better inventors. Observed wage growth may then
reflect a composition effect rather than an increase in quality-adjusted wages. I investigate
this concern by constructing proxies for inventor productivity and controlling for them in
my regression.13 The associated regression results, as reported in Appendix Table C.2,
suggest that inventor quality is positively associated with inventor wages, however, this
relationship does not quantitatively alter the estimated inventor supply elasticities.

Second, I control for pre-trends by adding lagged employment and wage growth as in
?, which yields significantly larger estimates as reported in Appendix Table C.4. Adding
firm fixed effects yields similar results as reported in Appendix Table C.3.

13I follow an AKM approach for annual R&D output for individual inventors and construct annual firm-
level measures of inventor quality by averaging over the inventor fixed effects for all employed inventors.
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3.4 Additional Evidence

Before concluding the empirical section, I want to highlight two additional model pre-
dictions that are born-out by the data. First, the model predicts a positive correlation
between inventor employment and R&D return as long as there is size-dependent monop-
sony power. I confirm this relationship in Table 2. In column (1) I find that a 10% increase
in the number of inventors hired is associated with a 2.3% increase in the R&D return.
This correlation becomes even stronger once we adjust for inventor quality, which might
be appropriate measure since inventor quality is homogeneous in the model, as shown in
columns (2) and (3). Finally, column (4) confirms that this relationship is indeed driven by
inventor employment and not overall employment. Overall employment is not a significant
predictor of R&D returns conditional on inventor employment and its inclusion does not
quantitatively change the relationship between R&D employment and R&D return.

Table 2: R&D Returns and Inventor Employment

(1) (2) (3) (4) (5)
ln R&D Return

ln Inventors 0.228*** 0.253*** 0.263***
(0.032) (0.031) (0.033)

ln Employment -0.018
(0.026)

ln Firm Dominance 0.139***
(0.041)

ln Inventor Specialization 0.229***
(0.080)

Quality adjustment ✓ ✓
R2-Within 0.07 0.15 0.15 0.01 0.00
Observations 11,845 11,844 11,812 10,477 11,828

Note: This table reports OLS coefficient estimates. Columns (2)-(3) adjust inventor employment for quality. See text and
Appendix B for details. Standard errors are clustered at the NAICS6 level.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.

Second, size-dependent monopsony power predicts a correlation between the R&D re-
turns and firm expansion. Drivers of firm expansion, as captured, e.g., by firms’ stock
returns or productivity shocks, should, thus, be positively correlated with the R&D return.
I confirm this relationship in Table 3. Both prior stock market returns and productivity
changes are positively correlated with the R&D return. Thus, R&D returns appear to
increase during firm expansion, in line with the size-dependent monopsony power.

Finally, monopsony power is often associated with a lack of outside options for workers
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Table 3: R&D Returns and Firm Expansion

(1) (2)
ln R&D Return

Lagged Excess Return 0.258***
(0.031)

Lagged TFP Growth 0.219***
(0.044)

R2-Within 0.01 0.00
Observations 10,065 7,922

Note: This table reports OLS coefficient estimates. See text
and Appendix B for details. Standard errors are clustered at the
NAICS6 level.

Standard errors in parentheses. Significance levels: * 10% , ** 5%,
*** 1%.

(Schubert et al., 2023). I provide some further evidence on this idea in columns (4) and
(5) of Table 2. First, I develop a measure of firm dominance in its specific inventor labor
market. Defining this market is not straight-forward, however, technology classifications of
patents might provide a reasonable approximation. Thus, I calculate the share of inventors
employed by the firm among those patenting in the relevant technology classes.14 Column
(4) confirms that this measure is significantly associated with R&D return, in line with a
size-dependent monopsony interpretation. Vis-à-vis the general R&D employment regres-
sion, this result confirms that the regression is not just driven by differences in the size of
the technology market across firms. A lower regression coefficient might be explained by
measurement error in the firm dominance measure.

Second, a lack of outside options can be the product of specialization on the part of
inventors. Thus, we might expect that firm that tend to hire more specialized inventors
also have larger R&D returns. Column (5) confirms this conjecture. I measure inventor
specialization through technology classes. For each inventor, I measure how similar the
patents are that they worked on as measured by the distance of their technology classes.
Inventors with small distances are more specialized.15 I aggregate to the firm-level by
taking an average over all employed inventors. Column (5) confirms that firms hiring more
specialized inventors indeed have larger R&D returns—in line with the idea that they have
more market power.

14I use the CPC classification, which has around 600 individual technology classes. A patent can belong
to multiple technology classes and I treat the full list of classifications as the appropriate market.

15To reduce measurement error, I only calculate this measure for inventors with significant patent port-
folio.
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4 Quantification

The evidence presented in the previous section suggests a potentially meaningful role for
monopsony power in the market for inventors. This section quantifies its impact on inno-
vation and economic growth in an extension of the model presented in Section 2 that is
calibrated it to match the evidence.

4.1 Quantitative Model

There are three challenges in using the model presented in Section 2 together with the
evidence in Section 3 to investigate the importance of monopsony power in R&D for eco-
nomic growth and innovation. First, my data is restricted to listed firms, which tend to
be larger. Resultingly, I might overstate the importance of monopsony power by using
evidence on large firms, which might have more monopsony power, while ignoring the 40%
of R&D expenditure that is not accounted for by these firms.16 Secondly, the model ig-
nores intermediate inputs in R&D, which account for 20% of R&D costs in practice. As I
discuss below, introducing intermediate inputs tends to dampen the importance of monop-
sony power as firms are able expand using intermediates instead of R&D workers. Finally,
the model does not take into account pay linked to firm performance, which is common in
practice, e.g., through stock-based compensation, and which may bias estimated firm-level
labor supply elasticities downwards.17

I, thus, extend the baseline model to address these challenges. First, I introduce non-
listed firms by allowing for two types of firms with different baseline R&D productivities
{Al, Anl}. I fix the mass of firms for each type exogenously to match data from the NSF
and denote the share of listed firms by ζ. As shown below, non-listed firms tend to have
much smaller R&D budgets in practice, which the model interprets as having low R&D
productivity. Resultingly, adding these firms to the model introduces a mass of firms with
relatively low monopsony power as long as ℓ̄ > 0, which reduces the overall impact of
monopsony power over inventors on economic growth.

Second, I introduce stock-based compensation to account for a potential direct link be-
tween wages and firm performance. I assume that a fraction of the R&D wage is paid out in
form of a fixed number of stocks in the next period that is set to constitute a constant share

16Total R&D expenditure in the Compustat sample in 2019 is 340 billion USD, while the NSF reports
a total expenditure on R&D for all firms of 564 billion USD, implying that listed firms account for 60% of
R&D expenditure. For 2000, this share is slightly higher at 72%.

17For example, Kline et al. (2019) estimate that a significant share of the value created from patent
grants is captured by high-skilled workers in small firms. Card et al. (2018) and Friedrich et al. (2021)
provide evidence of pass-through of firm shocks to worker wages.
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of expected wages. The number of shares is set one period in advance such that workers at
fortunate firm receive an unexpected pay rise and vice versa. Resultingly, expected wages
remains the same, however, a fraction of the realized wage is directly linked to stockmarket
returns for the firm. As discussed above, such a correlation constitutes a violation of the
exclusion restriction for using stockmarket returns as an instrument for R&D productivity
shocks when estimating the inverse labor supply elasticity. 18 Introducing this channel di-
rectly in the model allows me to take this empirical challenge into account when assessing
the extent of monopsony power.

Finally, I augment the R&D production function to include intermediate inputs Rkt via
a standard CES aggregator:

Mkt+1 = Qt · Ak ·

(
α

1
σ
L · ℓ

σ−1
σ

kt + (1− αL)
1
σ ·
(
Rkt

Qt

)σ−1
σ

)γ· σ
σ−1

. (16)

The new production functions nests the original one with αL = 1. The normalization by Qt

is necessary to allow for a balanced growth path. Intermediate inputs are produced 1-for-1
from the final outputs such that the aggregate resource constraint becomes:

Yt = Ct +

∫ 1

0

xkt · dk +
∫ 1

0

Rkt · dk. (17)

Introducing intermediates is important as I proxy for R&D wages using the ratio of
total R&D expenditure to R&D employment, which can be an imperfect measure if R&D
expenditure partly reflects materials rather than labor cost. I show in Appendix A.3 that
the changes in R&D per inventor become a potentially biased proxy for changes in R&D
wages in this setup, where the bias depends on the elasticity of substitution between in-
puts as well as the markdown. Intuitively, firms increase their materials share when they
expand if markdowns increase in R&D employment, which makes R&D expenditure more
responsive relative to employment and, thus, R&D expenditure per worker becomes more
responsive than R&D wages. Hence, one might over-estimate the degree of monopsony
power in R&D when using R&D expenditure per worker rather than R&D wages, however,

18To give a numerical example, consider workers at firm k have an expected wage of 0.5 tomorrow and
expect the firm to have value 1.5 as well. Furthermore, the stock-based compensation is set such that
workers expect to earn 15% of their salary through stock-based compensation. Then, workers will receive
15%·0.5

1 = 0.05 shares of the firm tomorrow. Suppose that wages are fixed, however, the value of the firm
could be 2 or 1 tomorrow. Then, if the value goes up, workers receive 2 · 0.05 + 0.85 · 0.5 = 0.525 in
compensation. Alternatively, if the value goes down, workers receive a total of 1 ·0.05+0.85 ·0.5 = 0.475 in
compensation. This mechanism, thus, yields a positive correlation between stock returns and compensation
even though expected wages are constant.
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this bias can be accounted for within the model.

4.2 Calibration

I calibrate the quantitative model using a combination of external and internal calibration.19

For the external calibration, I pick a standard value for discount factor β = 0.97, which
together with a targeted growth-rate of 1.5% implies an annual risk-free interest rate of
5%. I follow the literature and calibrate the R&D scale elasticity as γ = 0.5 (Acemoglu et
al., 2018). I calibrate the demand parameter α to achieve a markup in the product market
(1/α) of 25%. Following Chetty et al. (2012), I set the aggregate labor supply elasticity
to ϵ = 0.5, such that an exogenous 1% rise wages would raise aggregate employment by
0.5%. Next, I set the elasticity of substitution between materials and labor in R&D at 0.8
following the evidence in Oberfield and Raval (2014) for the production sector.20 Finally,
I set the share of listed firms among R&D conducting firms to 5% based on the number of
firms in my sample compared to the NSF R&D surveys.21

For the internal calibration, I target a set of macro and micro moments. At the aggregate
level, I target an annual growth rate of 1.5% and a relative size of listed to non-listed firms
of 35, which is in line with the relative size of firms in my sample and in the NSF aggregate
statistics. These moments are particularly informative about the average R&D productivity
of listed and non-listed firms {Anl, Al}. Furthermore, I target a total labor supply of 1/3,
equivalent to 8 hours per day, whereof 14.6% work in R&D as in Acemoglu et al. (2018), to
pin down the labor disutility parameters {αP , αR}. Finally, I target a labor share of 79% in
R&D to pin down the relative importance of labor in the R&D production function αL.22

Next, I target a set of micro-moments from the data together with the evidence presented
in the previous section. In particular, I target the standard deviation of the R&D growth
rate for listed firms together with the auto-correlation of R&D to pin down the parameters
of the demand process {σ, ρ}. I calculate these moments in the model using simulation and
focusing on listed firms only. Finally, I target the regression evidence in columns (1) and
(2) of Table 1 to inform the monopsony parameters {ξ, ℓ̄}.

19See Appendix A.4 for a full description of the quantitative model together with the (recursive) balanced
growth path equilibrium.

20Unfortunately, there is no good evidence on the degree of substitution between capital and labor in
the R&D process. Furthermore, it is not clear ex-ante whether that degree should be lower or higher than
in the production process. On the one hand, human capital is critical to the generation of new ideas and,
thus, R&D. On the other hand, some lab tasks might be highly prone to automation.

21My sample in 2000 has 1,068 firms, while the NSF reports 17,757 firms in total conducting R&D. For
2019, my sample has 480 firms, while the NSF reports a total of 9,890 firms conducting R&D. These figures
imply a share of listed firms among R&D conducting firms of 4.9% and 6% for 2019 and 2000, respectively.

22I calculate this figure based on NSF data. See the calculations in Section 2 and Online Appendix E.1.
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Table 4: Parameters and Calibration Targets

A. Parameters
Parameter Symbol Value Source

A.1. External calibration
Discount factor β 0.97 Standard value
Labor supply elasticity ϵ 0.50 Chetty et al. (2012)
R&D scale elasticity γ 0.50 Acemoglu et al. (2018)
Share of listed firms ζ 0.05 NSF BRDIS 2019
Markup parameter α 0.80 Terry (2023)
Elas. of substitution in R&D θ 0.80 Oberfield and Raval (2014)

A.2. Internal calibration
Labor disutility production αP 0.153 Direct
Labor disutility R&D αR 0.338 Direct
Labor weight in R&D αL 0.965 Direct
R&D productivity listed Al 0.380 Moment matching
R&D productivity unlisted Anl 0.020 Moment matching
Std. dev. R&D prod. shocks σ 0.325 Moment matching
Autocorr. R&D prod. shocks ρ 0.948 Moment matching
Avg. R&D supply elasticity ξ 3.974 Moment matching
Rev. R&D supply elasticity ℓ̄ 2.94·104 Moment matching

B. Moments
Moment Data Model Source

Growth rate 0.015 0.015 Data
Relative R&D listed vs non-listed 35 35 Data
Std. dev. of R&D growth-rate 0.316 0.316 Data
Autocorr. of R&D 0.922 0.89 Data
Wage elasticity 0.923 0.842 Data
Wage elas. for small R&D 0.41 0.426 Data
∆ wage elas. large R&D 1.245 1.245 Data
Labor share in R&D 0.79 0.79 Data
R&D employment 0.047 0.047 Acemoglu et al. (2018)
Production employment 0.286 0.286 Acemoglu et al. (2018)

Note: This table reports the calibrated parameters and targeted moments for the quantitative model. See text for
details.

Table 4 reports the calibrated parameters, and the targeted moments for the internal
calibration and their counterparts in the model. The model fits well with the largest
deviation coming from the average wage elasticity. The parameters suggests that listed
firms are significantly more productive in R&D and that there is a significant amount of
monopsony power for larger firms.

As discussed in the empirical section, the model makes a range of predictions for the
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R&D return under monopsony power. I confirm these in Table 5. Column (1) repeats
the estimates from the data that were already reported in Section 3. Column (2) reports
coefficients based on simulated data from the calibrated model and column (3) reports
coefficients from the calibrated model when shutting down monopsony power by forcing
firms to be price takers. The table confirms that the model qualitatively account for the
relationship of R&D returns with the size of the inventor workforce, lagged excess returns,
and lagged productivity growth under monopsony power. Quantitatively, the coefficients
are of the same order of magnitude as the estimates in the data, but the correlations tend
to be stronger for the inventor workforce and lagged excess returns in the model. Potential
contributing factors may be a lack of measurement error in the model and that stock market
returns are exclusively driven by R&D productivity in the model.

Table 5: R&D Returns and Monopsony

(1) (2) (3)
A. Inventors ln R&D Return

ln Inventors 0.253*** 0.529*** -0.021***
(0.031) (0.001) (0.000)

B. Stock Market Return ln R&D Return

Lagged Excess Return 0.258*** 0.457*** -0.030***
(0.031) (0.005) (0.000)

C. Productivity growth ln R&D Return

Lagged TFP Growth 0.219*** 0.159*** -0.010***
(0.044) (0.003) (0.000)

Source Data Model Model
Monopsony — Yes No
Observations 7,922 99,994 99,994

Note: This table reports OLS coefficient estimates. Column (1) reports estimates from the
sample. Columns (2) and (3) report estimates from simulated data from the model. See
text and Appendix B for details. Standard errors are clustered at the NAICS6 level.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.

Finally, before discussing counterfactuals, I want to briefly highlight the importance
of accounting for stock-based compensation and intermediate inputs. Table 6 reports the
regression coefficients when estimating columns (1) and (2) in the Table 1 in the data and
the model under alternative specifications. The first row reports the data, while the second
row reports a calibration that does not include stock-based compensation nor intermedi-
ate inputs. The calibration provides a reasonable fit. The next rows add in stock-based
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compensation and intermediate inputs using the main calibration. The resulting regression
coefficients imply much larger labor supply elasticities and, thus, suggest that the cali-
brated model overestimates the degree of monopsony power. The final row re-calibrates
the model to the main specification, providing a similarly good fit, however, taking into ac-
count stock-based compensation as well as intermediate inputs. The exercise thus suggests
that the main regression evidence cannot directly speak to the importance of these biases,
however, we can take them into account in the model.

Table 6: Wage Regression in Data and Model

Model Reg. (1) Regression (2)
Main Base Inter.

Data 0.923 0.410 1.245

Baseline 0.884 0.410 1.355
+ Stock-based compensation 0.891 0.413 1.375
+ Intermediate inputs 1.042 0.527 1.485
+ Both 1.048 0.530 1.497

Adjusted 0.842 0.426 1.245
Note: This table reports regression coefficients from the data and from simulated data. The

first row reports regression coefficients from Table 1. The second row reports coefficients
from a calibrated model without stock-based compensation or intermediate inputs. The
third to fifth row adjusted the calibrated model by adding stock-based compensation and
intermediate inputs in R&D. Finally, the last row re-calibrates the model including stock-
based compensation and intermediate inputs, and reports the final regression results.

4.3 Counterfactuals

Table 7 investigates the importance of monopsony power in the calibrated model. The first
column reports values for the baseline model, while columns 2-4 present counterfactual
economies. The “Full” counterfactual shuts down monopsony power entirely by forcing
firms to take wages as given, as in a competitive equilibrium. The “Fixed L̃R” scenario
forces firms to act as price takers, but holds constant total R&D employment L̃R =

∫ 1

0
ℓkt·dk

through a general tax on R&D employment. It, thus, focuses exclusively on the impact
of reallocating R&D employment across firms in absence of monopsony. Finally, scenario
∆L̃R leaves monopsony power in place, but implement the aggregate R&D employment
of the “Full” counterfactual through a subsidy on R&D employment. This scenario, thus,
allows us to understand how important lower demand for R&D workers is on the aggregate.

Table 7 suggests that monopsony power is very costly in the model. In its absence,
growth accelerates from 1.5% per annum to 1.76%, yielding a welfare improvement by 6%
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in consumption equivalent terms. Higher growth is partly fueled by a 13% increase in R&D
employment, however, increasing employment alone cannot explain the 1.76%−1.5%

1.5% ≈ 17%
increase in growth suggesting an important role for reallocation across firms.23 Importantly,
as shown in Panel B, the model without monopsony power feature significantly more con-
centrated R&D employment. For example, the share of R&D expenditure accounted for
by the 10% largest firms rises from 70% to 83%. Intuitively, rising monopsony power at
the top held back their demand for R&D resources, such that the competitive equilibrium
features more concentration. On the other hand, wage premia at the top remain relative
constant, as shown in Panel C, partly to due a general rise in R&D wages in the middle of
the R&D employment distribution.

Table 7: Counterfactuals for Full Calibration

Outcome Baseline No Monopsony

Full Fixed L̃R ∆ L̃R

A. Aggregates
Growth rate 1.50% 1.76% 1.65% 1.59%
∆ Welfare 0.0% 6.2% 3.7% 2.2%
∆ R&D Employment 0.0% 12.8% -0.0% 12.8%
∆ Firm Value 0.0% -12.5% -37.0% 9.4%

B. R&D Expenditure Share
Top 10% 69.9% 83.0% 83.0% 70.0%
Top 5% 49.8% 69.9% 69.8% 49.8%
Top 2.5% 31.4% 48.3% 48.2% 31.5%

C. Wage Premium
Top 10% 14.1% 13.0% 13.0% 14.1%
Top 5% 32.5% 27.4% 27.5% 32.6%
Top 2.5% 62.6% 62.9% 63.0% 62.8%

Note: This table reports key statistics from the calibrated model and counterfactual exercises.

Columns 3 and 4 suggest that reallocation across firms plays a more prominent role in
the growth acceleration rather than the overall increase in R&D employment. In particular,
reallocation alone yields an acceleration in economic growth by 1.65% − 1.5% = 0.15 p.p.,
while changing total R&D employment “only” yields an additional 0.09 p.p. of economic
growth.

23In absence of reallocation, the rise in R&D employment alone would have yielded an increase in growth
equal to γ times the percent change in employment.
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5 Discussion

Before concluding, I want to discuss three topics that may add some nuance to my findings.

Perfect price discrimination. A necessary assumption to generate monopsony power
in the model is that firms cannot fully price discriminate among their workers. This as-
sumption could be tested with inventor-level data by investigate whether expanding firms
change only the wages of marginal workers or also of inframarginal ones. Seegmiller (2023)
provides some evidence along those lines for “high-skilled” workers using the LEHD. In-
terestingly, he finds that labor supply elasticities are larger for new recruits rather than
incumbent workers, which is the opposite of what a model with perfect price discrimination
would predict if we are willing to assume that new recruits can be thought of as marginal
workers. Nonetheless, I explore the idea of price discrimination in Appendix A.5.3 by
introducing a flexible level of price discrimination. Higher levels of price discrimination
naturally reduce the growth impact of monopsony power.

Firm entry and entrepreneurship. Another important consideration is firm entry and
entrepreneurship. The exercise of monopsony power increases the value of the firms and,
thus, might incentivize entry. Vice versa, forcing firms to be price takers significantly re-
duces their value, as shown in row four of Table 7. We might thus suspect that this leads
to reduced entry, giving rise to a countervailing force to the increase in R&D employment.
Thus, the overall impact of monopsony power may be dampened to the degree that monop-
sony power of large firms is an important motivation for firm entry. I discuss this issue
further in Appendix A.5.2.

The nature of R&D productivity differences. As discussed above, the source of firm
heterogeneity in R&D employment matters significantly when quantifying the impact of
monopsony on economic growth. In my model, firms differ in their demand for inventors
because their products are of different quality. This quality is directly reflected in their im-
pact on aggregate productivity such that firms and planner agree on the relative allocation
of R&D workers in a competitive benchmark economy. Monopsony power then distorts this
allocation and, thereby, reduces economic growth. However, these results would be very
different if, e.g., firms differed in their demand for inventors because they were differen-
tially able to protect their intellectual property. In this scenario, monopsony power might
actually be growth enhancing by offsetting a “distortion” vis-à-vis the planner allocation.
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6 Conclusion

Politicians, commentators, and academics alike have raised concerned about the macroeco-
nomic implications of limited competition in U.S. labor markets. This paper suggests that
these concerns might be warranted when it comes to the market for inventors.

I reach this conclusion in three steps. In the first step, I present a heterogeneous firms
endogenous growth model with monopsony power in the market for inventors. The model
suggests two channels through which monopsony power harms economic growth and, thus,
welfare. First, under monopsony power firms depress inventor wages by reducing their hir-
ing. Resultingly, and if aggregate inventor supply is not perfectly inelastic, there are fewer
inventors and, thus, there is less innovation. Second, monopsony power might be stronger
for larger firms in which case they depress their demand for inventors disproportionally.
Resultingly, inventor employment becomes artificially skewed towards smaller firms. This
misallocation further depresses economic growth by failing to allocate workers towards firms
with the largest marginal products.

In the second step, I present evidence suggesting that firms indeed have monopsony
power over inventors and that this power is stronger for firms that employ many inventors.
Key to these insights are estimates for firm-level inventor labor supply elasticities, which
govern the extent of monopsony power in the model. I estimate these for a sample U.S.
listed firms using an instrumental variable strategy. My estimates suggest that monopsony
power is pervasive and indeed stronger for larger firms. I find that firms with above median
inventor employment would lose only about 6.0% of their R&D workforce if they were to
reduce their wages by 10%, while below median R&D employment firm would lose 24.4%.

In the final step, I present a quantitative extension of the baseline model and calibrate it
to match my evidence on inventor labor supply elasticities. The calibrated model suggests
that U.S. economic growth would increase from 1.50% to 1.76% per year in absence of
monopsony power leading to a welfare improvement of 6%. Growth accelerates due to an
expansion of inventor employment and an improvement in their allocation across firms.

These results suggest several avenues for future research. First, monopsony power
over inventors in the corporate sector might affect their entrepreneurial activity. These
considerations appear particularly relevant as big tech firms have engaged in a large number
of acquisition of startups. Second, monopsony power might affect human capital investment
by depressing its returns and by tilting investments towards skills that are less subject
to monopsony power. Thus, monopsony power might not only affect the distribution of
inventors across firms, but also the distribution of human capital across skills.
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Appendix

A Theory Appendix

A.1 Baseline Model

A.1.1 Characterization of Competitive BGP Equilibrium

In the following, I characterize the competitive equilibrium and subsequently highlight the
implications for a Balanced Growth Path.

Household. Household optimization yields the familiar Euler equation:(
Ct+1

Ct

)σ (
v(LP,t, LR,t)

v(LP,t+1, LR,t+1)

)1−σ

= β ·Rt+1. (A.1)

Along a BGP this gives rise to the standard relationship between (consumption) growth,
interest rate, and discount factor: (1 + g)σ = β · (1 + r).

The supply of production and research labor satisfies

WP,t

Ct
=

(
LP,t
αP

) 1
ϵ

WR,kt

Ct
=

(
LR,t
αR

) 1
ϵ

·

(
ℓ+

1

1 + ξ
+

ξ

1 + ξ
·
∫ 1

0

(
ℓkt
LR,t

)1+ξ

dk

)−1

·

(
ℓ+

(
ℓkt
LR,t

)ξ)
.

(A.2)

As discussed above, ϵ governs the labor supply elasticity at the aggregate level, while ξ
and ℓ̄ govern the firm-specific labor supply elasticities in the R&D sector. In particular, we
have

∂ lnLP,t
∂ lnWP,t

=
∂ lnLR,t
∂ lnWR,t

= ϵ and ∂ ln ℓkt
∂ lnWR,kt

=
1

ξ
· ℓ̄+ (ℓkt/LR,t)

ξ

(ℓkt/LR,t)
ξ

≡ ϵkt,

where WR,t =
∫ 1

0
ℓkt ·WR,kt · dk is the average wage in the R&D sector. Note that ϵkt = ξ if

ℓ̄ = 0, which is the CES case, and ϵkt → ∞ if ξ → 0, which recovers the case where R&D
workers are perfectly mobile across firms and wages are equalized within the R&D sector.
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Production. The first order conditions of the final production firms gives rise to demand
curves for production workers and intermediate goods

WP,t

Ct
=
Yt
Ct

· 1− α

LP,t
and pjt = α ·

(
LP,t · zjt
xjt

)1−α

. (A.3)

Using this demand curve we can solve the associated firms’ profit maximization problem.
The equilibrium monopoly price pM is constant across firms and given by pM = ψ

α
. All

prices are relative to the final good whose price is normalized to 1. Equilibrium quantities
xkt and profits are

xkt = zkt · LP,t ·
(
ψ

α2

)− 1
1−α

and πkt = π̃t · zkt, (A.4)

where π̃t = (1− α) · α
1

1−α ·
(
ψ
α

)− α
1−α · LP,t is a common profit shifter.

Resultingly, output and consumption, i.e. output minus production costs, are given by

Yt = Qt · LP,t · α
α

1−α ·
(
α

ψ

) α
1−α

and Ct = Yt −
∫ Qt

0

ψ · xkt · dk = (1− α2) · Yt. (A.5)

Clearing the production labor market, we have

LP,t = α
1

1+ϵ

P · (1 + α)−
ϵ

1+ϵ . (A.6)

Note: Insufficient supply in equilibrium depends on labor supply elasticity.
Conjecture: Fixing the insufficient supply of intermediates also fixes the labor market.

Innovation. Taking into account the characterization developed above, we can restate
the firm’s innovation problem as

Vt(zkt, Qkt) = max
ℓkt

{
Qkt · π̃t −Wkt · ℓkt +R−1

t+1 · Et [Vt+1(zkt+1, Qkt+1)|zkt]
}

s.t. Qkt+1 =Mkt+1 · zkt+1 +Qkt, Mkt+1 = Qt · Ak · ℓγkt and WR,kt = WR,t(ℓkt).

(A.7)

Along a Balanced Growth Path with π̃t = π̃ and Rt+1 = R one can verify that

Vt(zkt, Qkt)

Qt

= ṽ(zkt) + V · qkt, (A.8)

where I denote values normalized by Qt in lower case, the value of quality-adjusted inter-
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mediates is V = R/(R− 1) · π̃ and the value of innovation capability ṽ(zkt) is the solution
to

ṽ(zkt) =max
ℓkt

{
1

R
· V ·mkt+1 · E[zkt+1|zkt]− ℓkt · wR,kt +

1 + g

R
· Et[ṽ(zkt+1)|zkt]

}
s.t. mkt+1 = Ak · ℓγkt and wR,kt = WR(ℓkt).

(A.9)

It is well known that there is a unique solution to this value function iteration problem.
Furthermore, note that the choice of ℓkt is independent of the firm value such that the
associated first order conditions are given by

ℓkt =

(
γ · Ak · Et[π̃t+1 · zkt+1|zkt]

Wkt · (1 + 1/ϵkt)

) 1
1−γ

. (A.10)

Derivations for the firm’s value function maximization problem. The baseline
problem is given by

Vt(zkt, Qkt) = max
ℓkt

{
Qkt · π̃t −Wkt · ℓkt +R−1

t+1 · Et [Vt+1(zkt+1, Qkt+1)|zkt]
}

s.t. Qkt+1 =Mkt+1 · zkt+1 +Qkt, Mkt+1 = Qt · Ak · ℓγkt and WR,kt = WR,t(ℓkt).

(A.11)

One can guess and verify that the firm’s value function in equilibrium takes the form

Vt(zkt, Qkt) = VZ,t(zkt) + VQ,t ·Qkt, where VQ,t = π̃t +
∑
s=1

(∏
k=1,s

R−1
t+k

)
π̃t+s

and VZ,t(zkt) = max
ℓkt

{
−WR,kt · ℓkt +R−1

t+1 · Et [Mkt+1zkt+1 · VQ,t+1 + VZ,t+1(zkt+1)|zkt]
}

s.t. WR,kt = Wt(ℓkt) and Mkt+1 = Qt · Ak · ℓγkt
(A.12)

Note that the choice of R&D input is independent of the evolution of VZ,t(zkt) and,
thus, we can solve for optimal private R&D input as

ℓkt =

(
γ ·Qt · Ak · VQ,t+1

WR,kt · (1 + 1/ϵR,kt)

) 1
1−γ

. (A.13)

This demand function together with labor supply can be used to clear the labor market
for R&D workers.
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Derivations for the social planners innovation problem. Imposing the static equi-
librium conditions derived above, we can restate the planner problem for R&D workers
as

max Et
∞∑
t=0

βt · (Ct · v(LP , LR,t))
1−σ − 1

1− σ

with v(LP , LR,t) = exp
(
− ϵ

1 + ϵ

(
1 + αR

(
LR,t
αR

) 1+ϵ
ϵ

))
,

LR,t =

(
ℓ+

1

1 + ξ

)−1

·

(∫ 1

0

ℓkt ·

(
ℓ+

1

1 + ξ

(
ℓkt
LR,t

)ξ)
dk

)
,

Ct = Qt · LP · (1− α) ·
(
ψ

α

)− α
1−α

and Qt+1 = Qt

(∫ 1

0

Ak · ℓγkt · zkt+1 · dk + 1

)
(A.14)

subject to the law of motion for firm-level R&D productivities. I denote the growth-rate
of aggregate technology as gt+1 =

∫ 1

0
Ak · ℓγkt · zkt+1 · dk.

The first-order condition for R&D labor is given by

γ ·Qt ·Ak · ℓγ−1
kt ·Et[zkt+1|zkt] ·

λQt+1

Ct · λCt
=

(
LR,t
αR

) 1
ϵ

· ℓ̄+ (ℓk,t/LR,t)
ξ

ℓ̄+ (1 + ξ)−1 + ξ
1+ξ

·
∫ 1

0
(ℓkt/LR,t)1+ξ · dk

,

(A.15)
where the RHS is the shadow price of hiring an R&D worker, which coincides in formula
with the competitive equilibrium.

We can solve for the marginal value of Qt as

λQt = λCt · Ct+1

Qt+1

(
1 +

∑
s=1,··· ,∞

( ∏
k=1,...,s

(1 + gCt+k)

)
·
λCt+s
λCt

)
(A.16)

Note: Easy to show that consumption and productivity growth at the same rate in this
model.

Define the shadow interest rate as R̃t+1 = λCt+1/λ
C
t and we can simplify further

Qt · ṼQ,t+1 ≡
λQt+1 ·Qt

Ct · λCt
=

1

R̃t+1

(
1 +

∑
s=1,··· ,∞

( ∏
k=1,...,s

1 + gt+1+k

R̃t+1+k

))
(A.17)
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Defining the shadow wage appropriately we can solve for the first order conditions as

ℓkt =

(
γ ·Qt · Ak · Et[zkt+1|zkt] · ṼQ,t+1 · Ct

W̃R,kt

) 1
1−γ

(A.18)

A.1.2 Characterization of the Planner Equilibrium

Planner output and consumption:

Ỹt = Qt · LP,t ·
(
ψ

α

)− α
1−α

and Ct = (1− α)Yt (A.19)

Planner production labor supply:

LP,t = α
1

1+ϵ

P (A.20)

A.1.3 Proofs

Proof of Proposition 1. WIP.

Proof of Proposition 2. WIP.

Proof of Proposition 3. WIP.

Proof of Proposition 4. The first statement can be derived directly from the firm’s first
order conditions. The second statement follows from the fact that the average product is
the R&D return times the R&D wage.
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A.2 Stock-based Compensation

R&D workers are often compensated through stocks. In 2019, the NSF reported that around
12% of total labor costs in R&D came through stock-based compensation. In the following,
I highlight how this compensation structure can lead to a bias when estimating labor
supply elasticities using stockmarket returns rkt as an instrument using three examples.
The examples highlight that alternative mechanisms for stock-based compensation lead
to no, upwards, or downwards bias when estimating the (inverse) labor supply elasticity.
Thus, the presence of stock-based compensation alone does not necessarily imply biased
estimation.

I consider the following setup: Total compensation Wkt is given by

Wkt = WC,kt + skt · Vkt, (A.21)

where WC,kt is the cash component of wages, skt denotes shares and Vkt the value of a share.
I assume that the cash component is fully flexible and reflects any potential monopsony
power, while considering alternative specifications for the stock-based compensation. Log
changes in compensation can be approximated as

∆ lnWkt ≈ sC,kt ·∆ lnWC,kt + (1− sC,kt) · (∆ ln skt +∆ lnVkt) .

Throughout, I am interested in estimating the elasticity of R&D wages with respect
to R&D employment using stockmarket returns, rkt = ∆ lnVkt, as an instrument. The
IV-estimator β̂IV and unbiased estimate β are given by

β̂IV =
Ĉov(rkt,∆ lnWkt)

Ĉov(rkt,∆ ln ℓkt)
and β =

Cov(rkt,∆ lnWC,kt)

Cov(rkt,∆ ln ℓkt)
,

where I assume instrument relevance, i.e. Cov(rkt,∆ ln ℓkt) > 0. Finally, firm’s stock
returns are assumed i.i.d. with an expected value of 0 and only total compensation is
observed.

Example 1: Fixed share of compensation. Suppose workers receive a fixed share
s of their compensation in stocks, while the remainder, WC,kt is paid out in cash. Total
compensation is thusWkt = WC,kt+s·Wkt. Simple algebra reveals then thatWkt = (1−s)−1·
WC,kt such that overall compensation moves 1-for-1 with cash compensation. Resultingly,
log changes in cash and overall compensation coincide, i.e. ∆ lnWkt = ∆ lnWC,kt, and the
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IV estimator is unbiased.

Example 2: Fixed number of shares. Suppose the number of shares skt is determined
one period in advance such that the expected share of compensation through stocks is s:

s =
skt · Et−1[Vkt]

skt · Et−1[Vkt] + Et−1[WC,kt]
.

Since stock returns are i.i.d, they are orthogonal to the predetermined changes in share
∆ ln skt. Resultingly, we have

Cov(rkt,∆ lnWkt) = sC · Cov(rkt,∆ lnWC,kt) + (1− sC) · V ar(rkt)

Hence, even if the cash wage is independent of the stock returns, we will see a positive
covariance of overall wage growth to stock returns. In other words, as long as cash wages
respond less than 1-for-1 with stock returns, using the latter as an instrument will lead to
a downwards bias of the estimated labor supply elasticity and an upwards bias of β:

β̂IV = sC · β + (1− sC) ·
V ar(rkt)

Cov(rkt,∆ ln ℓkt)
.

Example 3: Fixed value. Finally, suppose workers are promised a fixed compensation
in terms of stock values, e.g. 20k USD in form of the firm’s shares, such that

s =
Et−1[skt · Vkt]

Et−1[skt · Vkt] + Et−1[WC,kt]
. (A.22)

Since ∆ ln skt +∆ lnVkt is predetermined, it is independent of the stock return. Then, we
have that the estimated IV coefficient is given by

β̂IV = sC · β,

which is smaller than the true coefficient. Thus, using stock market returns leads to a
downwards biased estimated for β and an upwards biased labor supply elasticity in this
case.
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A.3 Materials in R&D

Consider the alternative innovation production function with materials Rkt.

Mkt+1 = Qt · Ak ·

(
α

1
σ
L · ℓ

σ−1
σ

kt + (1− αL)
1
σ ·
(
Rkt

Qt

)σ−1
σ

)γ· σ
σ−1

(A.23)

Here, αL = 1 recovers the baseline.
Consumption is then given by

Ct = Yt −Xt −
∫ 1

0

Rkt · dk (A.24)

Relative demand for inputs is given by

rkt
ℓkt

=

(
1− αL
αL

)
· ((1 + ϵkt) · wkt)σ (A.25)

Defining the effective price of R&D input as PR,t = (αL · ((1 + ϵit) · wit)1−σ + (1− αL))
1

1−σ ,
firms’ first order conditions are given by

ℓkt = αL ·
(
wit · (1 + ϵit)

PR,t

)−σ

︸ ︷︷ ︸
relative demand effect

·
(
γ · Ak · E[zkt+1|zkt]

PR,t

) 1
1−γ

︸ ︷︷ ︸
total demand effect

(A.26)

Two additional parameters to calibrate: αL and σ. Set σ to standard value in the
literature (below 1 appears natural here) and target cost-share of R&D expenditure for αL.

Bias due to materials. Let w̃kt = (wkt · lkt + rkt)/ℓkt, then one can show that

∂ ln w̃kt
∂ ln ℓkt

=
∂ lnwkt
∂ ln ℓkt

+
rkt

lkt · wkt + rkt
·
∂ ln

(
(1 + ϵkt)

σ · wσ−1
kt

)
∂ ln ℓkt︸ ︷︷ ︸

=bias

(A.27)

Thus, the estimated elasticity is going to be biased, however, the direction and extend
is ex-ante unclear. Note that the first term of the bias is the expenditure share of materials
such that the bias will be small in absolute value of the materials share in cost is small as
well.

42



A.4 Quantitative Model

This Appendix introduces the full quantitative model and derives the key Balanced Growth
Path equations.

A.4.1 Setup

There are two types of firms: listed and non-listed. The firms operate identically, but differ
in their average productivity as described above.

Final Production. A representative firm hires production labor LP,t at wage WP,t and
buys intermediate inputs {xjt}j∈[0,Qt] at price pjt to produce output Yt. The firm solves

max
LP,t,{xjt}j∈Qt

Yt −WP,t · LP,t −
∫
Qt

pjt · xjtdj s.t. Yt = L1−α
P,t

∫
Qt

z1−αjt · xαjtdj, (A.28)

where zjt is a demand-shifter. Production worker and intermediate good demand is
given by

WP,t

Ct
=
Yt
Ct

· 1− α

LP,t
and pjt = α ·

(
LP,t · zjt
xjt

)1−α

. (A.29)

Intermediate good producers. Intermediate goods in the economy can either be pro-
tected or unprotected. Protected goods QN

t are propitiatory to a unit mass of intermediate
good firms and constant unit cost ψ. For each intermediate good, the proprietor solves

max
xjt

pjt · xjt − ψ · xjt (A.30)

subject to the product demand curve detailed above. Profit maximizing monopoly price
pM is constant across firms and given by pM = ψ

α
. Unprotected goods QO

t are produced
and sold at unit cost ψ. All prices are relative to the final good whose price is normalized
to 1.

Equilibrium quantities xkt for protected and unprotected goods are given by

xkt =

zkt · LP,t ·
(
ψ
α

)− 1
1−α if k ∈ QO

t

zkt · LP,t ·
(
ψ
α2

)− 1
1−α if k ∈ QN

t

(A.31)

Equilibrium profits for protected products are given by

πkt = π̃t · zkt with π̃t = (1− α) · α
α

1−α ·
(
α

ψ

)− 1
1−α

· LP,t for k ∈ QN
t . (A.32)
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Products loose protection status with probability δ each period such that

QO
t+1 = QO

t + δ · QN
t . (A.33)

It will be useful to define QN
t =

∫
QN

t
zkt · dk and QO

t =
∫
QO

t
zkt · dk as the quality

adjusted mass of protected and unprotected products, and Qt as their sum. I will denote
values normalized by Qt in lower case.

The final output can be used for three purposes: consumption, production of interme-
diate goods and material in innovation. Market clearing thus requires

Yt = Ct +

∫
Qt

ψ · xjt · dj +
∫ 1

0

Rkt · dk. (A.34)

In a competitive equilibrium, output net of production cost for intermediate goods is

Yt − It = Qt · LP,t ·
(
(1− α) · qOt + (1− α2)α

α
1−α · qNt

)
·
(
α

ψ

) α
1−α

. (A.35)

Workers and Labor Markets A representative household own all firms and provides
labor in form of production workers LP,t and research workers {ℓkt}. The income from
production workers, WP,t, research workers WR,kt, bond holdings Rt ·Bt, and firm ownership
Πt can either be consumed Ct or invested in a riskless bond Bt+1. Flow utility depends
on labor supply and consumption and the future is discounted at rate β. The household
solves

max
∞∑
t=0

βt

(
logCt −

ϵ

1 + ϵ

(
αP

(
LP,t
αP

) 1+ϵ
ϵ

+ αR

(
LR,t
αR

) 1+ϵ
ϵ

))

s.t. LR,t =

(
ℓ+

1

1 + ξ

)−1

·

(∫ 1

0

ℓkt ·

(
ℓ+

1

1 + ξ

(
ℓkt
LR,t

)ξ)
dk

)

Bt+1 + Ct = Rt · Bt +WP,t · LP,t +
∫ 1

0

WR,kt · ℓktdk +Πt

(A.36)

Household optimization yields standard Euler equation:

Ct+1

Ct
= β ·Rt+1. (A.37)

Supply of production labor satisfies

WP,t

Ct
=

(
LP,t
αP

) 1
ϵ

. (A.38)
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Supply for research labor satisfies

WR,kt

Ct
=

(
LR,t
αR

) 1
ϵ

·

(
ℓ+

1

1 + ξ
+

ξ

1 + ξ
·
∫ 1

0

(
ℓkt
LR,t

)1+ξ

dk

)−1

·

(
ℓ+

(
ℓkt
LR,t

)ξ)
(A.39)

Innovation. Intermediate goods firms hire R&D resouces to produce new blueprints in
the subsequent period, which are added to their existing stock. A fraction ζ of firms is
“listed” with potentially different levels of R&D productivity across listed and non-listed
firms. Otherwise, both firm types behave identically.

Firms hire R&D workers ℓkt and use materials Rkt to produce Mkt+1 new products in
the next period according to production function

Mkt+1 = Qt · Ak ·

(
α

1
ν
L

(
ℓkt
αL

) ν−1
ν

+ (1− αL)
1
ν

(
Rkt

Qt

) ν−1
ν

) ν
ν−1

·γ

. (A.40)

Listed and non-listed firms differ exclusively in their level of Ak. Wages are determined in
the labor market as detailed above. Materials are produced 1-for-1 from the final output
and priced at cost.

Firms’ existing protected products lose protection status with probability δkt+1
i.i.d.∼

U [δ, δ̄], where δ = E[δkt+1]. The quality-adjusted stock of protected products QN
kt evolves

according to
QN
kt+1 =Mkt+1 · zkt+1 + (1− δkt+1) ·QN

kt. (A.41)

The demand-shifter zkt+1 is determined at the point of invention and is identical to all
products that were invented by the same firm in the same period.24 It follows a persistent,
stochastic process:

ln zkt+1 = (1− ρ) · µ+ ρ · ln zkt + σ · νkt+1 with νkt+1
i.i.d.∼ N(0, 1). (A.42)

24Alternatively, one could assume that demand for all products fluctuates concurrently at the firm level.
Such an assumption will affect the precise algebra of the model, but not the qualitative or quantitative
properties of the model with respect to the innovation model.

45



The firm solves

Vkt(zkt, Q
N
kt) = max

ℓkt

{∫
QN

kt

πkt · dk −WR,kt · ℓkt −Rkt +
1

Rt+1

· Et
[
Vkt+1(zkt+1, Q

N
kt+1)|zkt

]}

s.t. Mkt+1 = Qt · Ak ·

(
α

1
ν
L

(
ℓkt
αL

) ν−1
ν

+ (1− αL)
1
ν

(
Rkt

Qt

) ν−1
ν

) ν
ν−1

·γ

,

WR,kt = Wt(ℓkt), and QN
kt+1 =Mkt+1 · zkt+1 + (1− δkt+1) ·QN

kt.

(A.43)

Lemma 1. The firm’s value function can be decomposed as Vkt(zkt, QN
kt) = Vt(zkt, Ak) +

V Q
t ·QN

kt, where the V Q
t is the solution to

V Q
t = π̃t +

1− δ

Rt+1

· V Q
t+1 with π̃t ≡ (1− α) · α

α
1−α ·

(
α

ψ

)− 1
1−α

· LP,t (A.44)

and Vkt(zkt) is the solution to

Vt(zkt, Ak) = max
ℓkt

{
−Wkt · ℓkt −Rkt +

1

Rt+1

· Et
[
Mkt+1 · zkt+1 · V Q

t+1 + Vt+1(zkt+1, Ak)|zkt
]}

.

(A.45)

The firm’s innovation choice problem is thus given by

max
Mkt+1

R−1
t+1 ·Et[zkt+1|zkt] ·Mkt+1 · V Q

t+1 −WR,kt · ℓkt s.t. Mkt+1 = Qt ·Ak · ℓγkt, (A.46)

where the firm takes into account research labor supply and Ak differs across listed and non-
listed firms such that listed firms tend to be more productive. Note that this assumption
is isomorphic to assuming that these firms have consistently higher product demand.

The aggregate state of technology evolves according to

Qt+1 = Qt +

∫ 1

0

Mkt+1 · zkt+1 · dk. (A.47)

A.4.2 Steady-State Equations

Along a BGP, we have
g =

∫
m(z, A) · z · dF (z, A). (A.48)

1 + r =
β

1 + g
(A.49)
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Firms and innovation.
V Q =

(
1 + r

r + δ

)
· π̃. (A.50)

V (z, A) = −w(z, A) · ℓ(z, A) + 1

1 + r

(
V Q ·m(z, A) · E[z′|z] + (1 + g) · E[V (z′, A)|z]

)
(A.51)

ℓ(z, A) =

(
γ · A

w(z, A) · (1 + ϵ̃(z, A))

) 1
1−γ

. (A.52)

ln z′ = (1− ρ) · µ+ ρ · z + σ · ν with ν ∼ N(0, 1). (A.53)

Labor market.

w(z, A) = wR ·

(
ℓ+

(
ℓ(z, A)

LR

)ξ)
(A.54)

wR = c ·
(
LR
αR

) 1
ϵ

·

(
ℓ+

1

1 + ξ
+

ξ

1 + ξ
·
∫ 1

0

(
ℓ(z, A)

LR

)1+ξ

dF (z, A)

)−1

(A.55)

ϵ̃(z, A) = ξ ·

(
ℓ̄+

(
ℓ(z, A)

LR

)ξ)−1

·
(
ℓ(z, A)

LR

)ξ
(A.56)

LR =

(
ℓ̄+

1

1 + ξ

)−1

·
∫
ℓ(z, A) ·

(
ℓ̄+

1

1 + ξ
·
(
ℓ(z, A)

LR

)ξ)
· dF (z, A) (A.57)

F (z, A) = F (z) · P (A). (A.58)

Aggregates. Composition of products:

qN =
g

δ + g
and qD =

δ

δ + g
. (A.59)

Normalized output and consumption are thus given by

c =
(
(1− α) · qO + (1− α2) · α

α
1−α · qN

)
·
(
α

ψ

) α
1−α

· LP (A.60)

y =
(
qO + α

α
1−α · qN

)
·
(
α

ψ

) α
1−α

· LP . (A.61)
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R =
β

1 + g

Y =

(
α

α
1−α · (1 + g)−1 + α

2α
1−α ·

∫ 1

0

mkt · zktdk
)
· ψ− α

1−α · LP

C =

(
(1− α) · α

α
1−α · (1 + g)−1 + (1− α2)α

2α
1−α ·

∫ 1

0

mkt · zktdk
)
· ψ− α

1−α · LP

πkt = (1− α) · α
1+α
1−α · ψ− 1

1−α · LP · zkt

LP =

(
Y

C
· (1− α)

) ϵ
1+ϵ

· α
1

1+ϵ

wR,kt = C ·
(
LR
αR

) 1
ϵ

·

(
ℓ+

1

1 + ξ
+

ξ

1 + ξ
·
∫ 1

0

(
ℓkt
LR

)1+ξ

dk

)−1

·

(
ℓ+

(
ℓkt
LR

)ξ)

LR =

(
ℓ̄+

1

1 + ξ

)−1

g =

∫ 1

0

mkt · dk

A.5 Extensions

A.5.1 Human Capital Dynamics

Consider an alternative specification of labor disutility:

LR,t =

(
ℓ+

∫ 1

0
θ−1
kt · dk

1 + ξ

)−1

·

(∫ 1

0

∫ 1

0

ℓkt ·

(
ℓ+

θ−1
kt

1 + ξ

(
ℓkt
LR,t

)ξ)
dk

)
(A.62)

where θkt follows law of motion

ln θkt+1 = η · ln ℓkt + (1− δ) · ln θkt. (A.63)

Here, η = 0 recovers the baseline model, while η > 0 allows for some dynamics.

A.5.2 Entry

Formulation in terms of final goods. Free entry conditions requires

E[Vit] = ϕE ·Mφ
t , (A.64)
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where larger values of φ make Mt less responsive. One can parametrize ϕE to ensure that
Mt = 1 in baseline. Resource costs of entry are given by ϕE ·Mt.

In terms of research labor One can augment the utility function such that flow utility
is given by

logCt −
ϵ

1 + ϵ

(
αP

(
LP,t
αP

)1+ϵ

ϵ+ αR

(
LR,t + ζMt

αR

)1+ϵ

ϵ

)
(A.65)

ζ ·WR,t ·Mφ
t = E[Vit] (A.66)

This formulation allows R&D labor demand by larger firms to crowd out entrepreneur-
ship.

One can implement this formulation in the baseline model by setting ζ = E[Vit]/WR,t

and replacing the original αR with α̃R = (1 + 1/LR) · αR.

A.5.3 Price discrimination

As mentioned in the beginning of Section 2, the inability of firms to have discriminatory
wages among its employees is crucial to generating monopsony power. This section consid-
ers the case of wage discrimination and highlights the challenges of disentangling it from
monopsony power empirically.

First, note that we can write the labor disutility for R&D workers equivalently as

LR,t =

(
ℓ̄+

1

1 + ξ

)
·
∫ 1

0

(∫ ℓkt

0

(
ℓ̄+

(
ℓ

LR,t

)ξ)
· dℓ

)
· dk, (A.67)

which highlights that the marginal disutility differs among the employees of a given firm.
Tracing-out the integral we see that the 0th workers has a disutility proportional to ℓ̄,
while the ℓkt-th worker has a disutility proportional to ℓ̄+(ℓkt/LR,t)

ξ. If a firm can impose
perfectly discriminatory wage, then it will pay a lower wage to the former than to the latter.
Resultingly, the wage for the ℓth worker at any company needs to satisfy

WR,t(ℓ)

Ct
=

(
LR,t
αR

) 1
ϵ

·

(
ℓ̄+

1

1 + ξ
+

ξ

1 + ξ
·
∫ 1

0

(
ℓkt
LR,t

)1+ξ

dk

)−1

·

(
ℓ̄+

(
ℓ

LR,t

)ξ)
. (A.68)

Total labor cost for the firm, Ckt, is then just the intregral over all employees, and marginal
cost is the wage of the last employee:

Ckt =

∫ ℓkt

0

WR,t(ℓ) · dℓ ∝ ℓ̄+
1

1 + ξ
·
(
ℓkt
LR,t

)ξ
with ∂Ckt

∂ℓkt
∝ ℓ̄+

(
ℓkt
LR,t

)ξ
. (A.69)

49



Resultingly, firms’ marginal costs are the true marginal costs of hiring the last worker and
there is no monopsony power. Hence, planner and competitive equilibrium agree on the
relative marginal cost of R&D workers across firms and, thus, there is no misallocation
of R&D workers across firms nor insufficient demand due to firms’ gaming of the labor
market.

A natural question is then whether we can distinguish between both models empiri-
cally. Unfortunately, this task is difficult as average wages behave quite similarly in both
models. In particular, one can verify that the elasticity of the average wage with respect to
employment, Wkt = Ckt/ℓkt, remains positive even though firms do not have market power:

∂ lnWkt

∂ ln ℓkt
= ξ ·

1
1+ξ

·
(

ℓkt
LR,t

)ξ
ℓ̄+ 1

1+ξ
·
(

ℓkt
LR,t

)ξ . (A.70)

This phenomenon occurs as rising wages at the margin also push up the average wage, even
though inframarginal wages are unaffected. The true differentiating feature of both models
is the behavior of inframarginal wages. In the case of monopsony power, all workers are paid
the same and, thus, inframarginal wages move as marginal wages. In contrast, inframarginal
wages are unaffected by movements in total employment under wage discrimination and,
thus, their behavior is disconnected from movements in marginal wages.

In practice, firms are likely to have some power to wage discriminate, but might not
be able to achieve full discrimination due to information asymmetries and fairness consid-
erations. It might, thus, be useful to consider a mixture model in which workers are paid
partly a common and partly a discriminatory wage. Let αD be the discriminatory fraction
of the wage. Total labor cost are then satisfy

C(ℓkt) ∝ ℓkt ·

(
ℓ̄+

1 + (1− αD) · ξ
1 + ξ

·
(
ℓkt
LR,t

)ξ)
(A.71)

Resultingly, marginal cost become proportional to

∂Ckt
∂ℓkt

∝

1 + (1− αD) · ξ ·

(
ℓkt
LR,t

)ξ
ℓ̄+

(
ℓkt
LR,t

)ξ
(ℓ̄+ ( ℓkt

LR,t

)ξ)
(A.72)

Evidently, marginal costs are proportional to marginal disutility for αD = 1 and to marginal
average disutility for αD = 0. Note, however, that the elasticity of the average wage with
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respect to labor remains essentially unaffected:

∂ lnC(ℓkt)/ℓkt
∂ ln ℓkt

= ξ ·
1+(1−α)·ξ

1+ξ
·
(

ℓkt
LR,t

)ξ
ℓ̄+ 1+(1−α)·ξ

1+ξ
·
(

ℓkt
LR,t

)ξ (A.73)

Finally, one tell-tale sign of wage discrimination are, naturally, wage differences. In
particular, one can show that the absolute differences in (relative) wages within a firm is a
direct function of the degree of price discrimination:

1

ℓlk

∫ ℓkt

0

(
|Wkt(ℓ, αD)−Wkt|

Wkt

)
· dℓ = αD · 2 · ξ

(1 + ξ)2+ξ
·

(
ℓkt
LR,t

)ξ
ℓ̄+ 1+(1−αD)

1+ξ

(
ℓkt
LR,t

)ξ , (A.74)

where Wkt(ℓ) = αD ·Wt(ℓ) + (1 − αD) ·Wt(ℓkt) is the mixture of the discriminatory and
non-discriminatory wage paid to workers.

A.6 Depreciation shocks

Assume instead of complete depreciation that inventions only become publicly available
with probability δ ∼ U [δ, δ̄] and otherwise remain linked to the firm.

Version 1: Permanent productivity. Assume that the z value of an invention is
permanent based on the period of invention and define QN as the quality-adjusted stock of
inventions of a firm, which evolves according to

QN
kt+1 =Mkt+1 · zkt+1 + (1− δkt+1) ·QN

kt. (A.75)

Normalized by Qt, we have

(1 + g) · qNkt+1 = mkt+1 · zkt+1 + qNkt. (A.76)

I will denote the value of owning a stock Q̃kt at the beginning and end of period at
V Q(Q̃kt) and PQ

kt respectively. The value of owning an existing stock at the end of period
is then given by the solution to

PQ
t (Q̃kt) =

1

Rt+1

E
[
π · (1− δkt+1) · Q̃t + PQ

t+1((1− δkt+1) · Q̃kt)
]
, (A.77)

where π are profits per unit of quality. Guessing and verifying that PQ
t (Q̃kt) = PQ · Q̃kt,
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we have
PQ =

(
1− E[δ]
r + E[δ]

)
· π and V Q =

1 + r

r + E[δ]
. (A.78)

The return on owning such as stock is the given by

RQ
t+1 =

V Q · Q̃kt · (1− δkt+1)

PQ · Q̃kt

= (1 + r) · 1− δkt+1

1− E[δ]
(A.79)

Denote by V Z
t (z) and PZ

t (z) the value of innovation capacity. The former is the solution
to

V Z
t (z) = max

{
−ℓkt ·Wkt +

1

1 + r
E
[
V Q ·Mkt+1 · z′ + V Z

t (z′)|z
]}

s.t. Mkt+1 = Qt · Ak · ℓθkt and Wkt = Wt ·
(
ℓ̄+

(
ℓkt/L

R
t

)ξ) (A.80)

Guessing V Z
t (z) = Qt · V Z(z) along the Balanced Growth Path, we have

V Z(z) = max
{
−ℓkt · wkt +

1

1 + r
E
[
V Q ·mkt+1 · (1 + g) · z′ + V Z

t (z′)|z
]}

s.t. mkt+1 = Ak · ℓθkt and wkt = W ·
(
ℓ̄+

(
ℓkt/L

R
)ξ) (A.81)

Furthermore, we have

PZ(z) = E
[
V Q ·mkt+1 · (1 + g) · z′ + V Z

t (z′)|z
]

(A.82)

The return on the innovation capacity is thus given by

RZ
kt+1(z) =

V Z(z′)

PZ(z′)
= (1 + r) · V Q ·mkt+1 · (1 + g) · z′ + V Z

t (z′)

E [V Q ·mkt+1 · (1 + g) · z′ + V Z
t (z′)|z]

(A.83)

The total return of a firm is then given by

Rkt+1 =
PQ · q̃kt

PQ · q̃kt + PZ(zkt)
·RQ

kt+1 +
PZ(zkt) · q̃kt

PQ · q̃kt + PZ(zkt)
·RZ

kt+1. (A.84)

I denote quantity of undepreciated and depreciated varieties as QN
t and QD

t respectively
with the LOM:

QN
t+1 =

∫ 1

0

Mkt+1 · zkt+1 · dk + (1− E[δ]) ·QN
t (A.85)

QD
t+1 = E[δ] ·QN

t +QD
t (A.86)
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Furthermore, I will assume that knowledge externalities are linked to Qt = QD
t +QN

t .
I denote the share of undepreciated varieties as qN and the share of depreciated quality-

adjusted varieties as qD s.t.

qN =
g

δ + g
and qD =

δ

δ + g
. (A.87)

Normalized output and consumption are thus given by

c =
(
(1− α) · α

α
1−α · qD + (1− α2) · α

2α
1−α · qN

)
· ψ− α

1−α · LP (A.88)

y =
(
α

α
1−α · qD + α

2α
1−α · qN

)
· ψ− α

1−α · LP . (A.89)

Version 2: Productivity shocks. Alternatively, assume that quality depends entirely
on the firm. The mass of inventions a firm has patented evolves according to

Qkt+1 =Mkt+1 + (1− δkt+1)Qkt. (A.90)

As before, I denote the present discounted value of a mass of goods by V Q
t (Qkt, zkt),

which solves

V Q
t (Qkt, zkt) = Qkt · zkt · π +

1

1 + r
Et
[
V Q
t+1(Qkt(1− δkt+1), zkt)

]
. (A.91)

Guessing and verifying that V Q
t (Qkt, zkt) = Qkt · V Q(zkt) along the Balanced Growth

Path, we have

V Q(z) = z · π +

(
1− E[δ]
1 + r

)
· E[V Q(z′)|z]. (A.92)

End of period price:

PQ(z) =

(
1− E[δ]
1 + r

)
· E[V Q(z′)|z]. (A.93)

Return
RQ
kt+1 = (1 + r) · 1− δkt+1

1− E[δ]
· V Q(zkt+1)

Et[V Q(zkt+1|zkt)]
(A.94)

The value of innovation

V Z
t (z) = max

{
−ℓkt ·Wkt +

1

1 + r

(
Et[Mkt+1 · V Q(z′)|z] + Et[V Z

t+1(z
′)|z]

)}
s.t. Mkt+1 = Qt · Ak · ℓθkt and Wkt = Wt ·

(
ℓ̄+

(
ℓkt/L

R
t

)ξ) (A.95)
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Normalized along the BGP

V Z(z) = max
{
−ℓkt · wkt +

1

1 + r

(
Et[mkt+1 · V Q(z′)|z] + (1 + g)Et[V Z(z′)|z]

)}
s.t. mkt+1 = Ak · ℓθkt and wkt = W ·

(
ℓ̄+

(
ℓkt/L

R
)ξ) (A.96)

End of period price

PZ(z) =
1

1 + r

(
Et[mkt+1 · V Q(z′)|z] + (1 + g)Et[V Z(z′)|z]

)
. (A.97)

Return
RZ
kt+1 = (1 + r) · mkt+1 · V Q(z′) + (1 + g)V Z(z′)

Et[mkt+1 · V Q(z′)|z] + (1 + g)Et[V Z(z′)|z]
(A.98)

The total return of a firm is then given by

Rkt+1 =
PQ · q̃kt

PQ · q̃kt + PZ(zkt)
·RQ

kt+1 +
PZ(zkt) · q̃kt

PQ · q̃kt + PZ(zkt)
·RZ

kt+1. (A.99)

I denote quantity of undepreciated and depreciated varieties as QN
t and QD

t respectively
with the LOM:

QN
t+1 =

∫ 1

0

Mkt+1 · dk + (1− E[δ]) ·QN
t (A.100)

QD
t+1 = E[δ] ·QN

t +QD
t (A.101)

Furthermore, I will assume that knowledge externalities are linked to Qt = QD
t +QN

t .
I denote the share of undepreciated varieties as qN and the share of depreciated quality-

adjusted varieties as qD s.t.

qN =
g

δ + g
and qD =

δ

δ + g
. (A.102)

Normalized output and consumption are thus given by

c =
(
(1− α) · α

α
1−α · qD + (1− α2) · α

2α
1−α · qN · z̃

)
· ψ− α

1−α · LP (A.103)

y =
(
α

α
1−α · qD + α

2α
1−α · qN · z̃

)
· ψ− α

1−α · LP . (A.104)

where z̃ =
∫ 1

0

qNkt
qN

· zktdk. The weights of which, with a change of metric can be computed
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as the solution to

q̃N(z′) =

(
δ + g

g

)
·
∫
P (z′|z) ·m(z) · dz + (1− δ) ·

∫
P (z′|z) · q̃N(z) · dz. (A.105)

Such that
z̃ =

∫
q̃N(z) · z · dz (A.106)

A.7 Alternative Calibrations

Table A.1: Parameters and Calibration Targets for Simple Calibration

A. Parameters
Parameter Symbol Value Source

A.1. External calibration
Discount factor β 0.97 Standard value
Labor supply elasticity ϵ 0.50 Chetty et al. (2012)
R&D scale elasticity γ 0.50 Acemoglu et al. (2018)
Share of listed firms ζ 0.05 NSF BRDIS 2019
Markup parameter α 0.80 Terry (2023)
A.2. Internal calibration
Labor disutility production αP 0.153 Direct
Labor disutility R&D αR 0.319 Direct
R&D productivity listed Al 0.404 Moment matching
R&D productivity unlisted Anl 0.014 Moment matching
Std. dev. R&D prod. shocks σ 0.370 Moment matching
Autocorr. R&D prod. shocks ρ 0.950 Moment matching
Avg. R&D supply elasticity ξ 4.042 Moment matching
Rev. R&D supply elasticity ℓ̄ 2.35·104 Moment matching

B. Moments
Moment Data Model Source

Growth rate 0.015 0.015 Data
Relative R&D listed vs non-listed 35 35 Data
Std. dev. of R&D growth-rate 0.316 0.316 Data
Autocorr. of R&D 0.922 0.918 Data
Wage elasticity 0.923 0.884 Data
Wage elas. for small R&D 0.41 0.41 Data
∆ wage elas. large R&D 1.245 1.358 Data
R&D employment 0.047 0.047 Acemoglu et al. (2018)
Production employment 0.286 0.286 Acemoglu et al. (2018)

Note: TBD.
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B Data Appendix

B.1 Variable Construction

Inventor workforce robustness. I confirm that the pattern observed in Table ?? is
driven by true inventors in two robustness exercises. In the first robustness, I restrict the
inventors in my sample to those with (1) at least 10 patents in their career, (2) more than
5 years with patent applications, and (3) an at least 10-year gap between the first and last
patent application. In the second robustness I further restrict the sample to inventors who
worked for at least 2 listed US companies. These restriction put the focus on a robust set
of professional inventors with long careers in innovation.

Labor Market Dominance. Labor market dominance has been closely connected with
labor market power (Berger et al., 2022; Yeh et al., 2022). Furthermore, dominance has the
added feature that it connects labor market power with firm size. I construct a measure of
labor market dominance in the market for inventors to investigate the potential connection
between dominance and R&D returns. For each new patent in a firm’s portfolio I calculate
the share of potential inventors that are working with the firm, where I classify someone
as a potential inventor if they work on patents with the identical technology classification.
I then average this measure out over all of the firm’s patent to get a measure of overall
inventor market dominance. See Appendix ?? for further details on the construction.

Inventor Specialization. Inventor specialization is another potential source of employer
bargaining power as it reduces the set of potential employers. I investigate its relationship
with R&D returns by aggregating inventor-level specialization measures to the firm-level.
For an individual inventor, I construct a specialization measure based on the cosine dis-
tance between the technology classifications of patents that the inventor worked on over
the period. I then average this measure to the firm-level by taking a patent-weighted av-
erage over inventors associated with the firm. See Appendix B for further details on the
construction.
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C Empirical Appendix

C.1 First-stage Results

Table C.1 reports the first-stage results for the main specification.

Table C.1: Inventor Inverse Labor Elasticity Estimates — First Stage

(1) (2) (3)
A. Main ∆ ln Inventorsit

Stock Returnit 0.065*** 0.042*** 0.065***
(0.007) (0.009) (0.010)

— × {Top 50% R&D Return} 0.042***
(0.011)

— × {Top 50% Inventors} 0.001
(0.011)

B. Interaction ∆ ln Inventorsit × {Top 50% R&D Returnit}

Stock Returnit 0.002 0.007**
(0.002) (0.003)

— × {Top 50% R&D Return} 0.047***
(0.007)

— × {Top 50% Inventors} 0.039***
(0.008)

First stage F stat. (Main) 39 48
First stage F stat. (Inter.) 39 48
Observations 14,834 14,834 14,834

Note: First stage regression results for main specification. All regressions control for NAICS3 × year fixed effects. Standard
errors clustered at the NAICS6 level.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.
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C.2 Robustness for Elasticity Estimates

Table C.2: Inventor Inverse Labor Elasticity Estimates

(1) (2) (3) (4)
∆ ln Inventor Wageit

∆ ln Inventors 0.817** 0.814** 0.410** 0.405**
(0.325) (0.327) (0.203) (0.200)

— × {Top 50% R&D Return} 1.079** 1.093**
(0.512) (0.517)

— × {Top 50% Inventors} 1.245*** 1.268***
(0.446) (0.447)

{Top 50% R&D Return} -0.224*** -0.224***
(0.044) (0.044)

{Top 50% Inventors} -0.090*** -0.088***
(0.020) (0.020)

∆ Inventor Productivity 0.077* 0.083**
(0.040) (0.038)

First stage F stat. (Main) 39 40 48 48
First stage F stat. (Inter.) 60 59 71 69
Observations 14,834 14,834 14,834 14,834

Note: This reports the second stage results for the main specification with and without inventor productivity controls.
Firm-level inventor productivity is calculated as the average inventor productivity among current inventors, where
individual inventor’s productivity is simply their long-run average annual value created. All regressions control for
NAICS3 × year fixed effects. Standard errors clustered at the NAICS6 level.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.
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Table C.3: Inventor Inverse Labor Elasticity Estimates With Firm Fixed
Effects

(1) (2) (3)
∆ ln Inventor Wage

∆ ln Inventors 1.502*** 1.268*** 0.819**
(0.379) (0.428) (0.318)

— × {Top 50% R&D Return} 2.053**
(0.797)

{Top 50% R&D Return} -0.369***
(0.073)

— × {Top 50% Inventors} 1.717***
(0.537)

{Top 50% Inventors} -0.191***
(0.042)

First stage F stat. (Main) 44 31 35
First stage F stat. (Inter.) 43 64
Observations 14,816 14,816 14,816

Note: All regressions control for firm effects and NAICS3 × year fixed effects. Standard errors
clustered at the NAICS6 level.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.
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Table C.4: Inventor Inverse Labor Elasticity Estimates With Controls

(1) (2) (3) (4)
A. Second stage ∆ ln Inventor Wageit

∆ ln Inventorsit 4.826*** 3.818*** 4.570*** 3.620***
(0.980) (0.981) (1.045) (0.931)

— × {Top 50% R&D Returnit} 2.352*** 2.950**
(0.816) (1.228)

{Top 50% R&D Returnit} -0.142*** -0.201***
(0.050) (0.063)

B. First Stage: Main ∆ ln Inventorsit

Stock Returnit 0.066*** 0.023*** 0.022*** 0.025***
(0.006) (0.005) (0.004) (0.006)

— × {Top 50% R&D Returnit} 0.002 -0.006
(0.006) (0.007)

C. First Stage: Interaction ∆ ln Inventorsit × {Top 50% R&D Returnit}

Stock Returnit -0.005 -0.004
(0.003) (0.002)

— × {Top 50% R&D Returnit} 0.034*** 0.027***
(0.007) (0.005)

Firm Effects ✓ ✓
First stage F stat. (Main) 37 32
First stage F stat. (Inter.) 37 32
Observations 14,044 14,044 14,028 14,028

Note: All regression control for lagged inventor wage and employment growth as well as current inventor productivity
growth. All regressions control for NAICS3 × year fixed effects. Standard errors clustered at the NAICS6 level.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.
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Online Appendix
Not for publication

D Online Theory Appendix

D.1 Regression Bias with Supply Shocks

Labor supply is given by

LR =

∫ 1

0

α−1
it ℓit ·

(
ℓit · α−1

it

LR

)ξ
· di (D.1)

Firm-specific labor supply satisfies

Wit ∝
1

αit
·
(
ℓit · α−1

it

LR

)ξ
(D.2)

Labor demand
γ · θit · ℓγ−1

it = (1 + ξ) ·Wit (D.3)

Equilibrium quantities and wages

ℓit ∝ θ
1

ξ+1−γ

it · α
1+ξ

ξ+1−γ

it and Wit ∝ θ
ξ

ξ+1−γ

it · α
(1+ξ)(1−γ)

ξ+1−γ

it (D.4)

Thus

∆ lnWit

∆ ln ℓit
= ξ · ∆ ln θit

∆ ln θit + (1 + ξ) ·∆ lnαit
− (1− γ) · (1 + ξ) ·∆ lnαit

∆ ln θit + (1 + ξ) ·∆ lnαit
(D.5)

Story 1: Differences in the nature of stock returns. Firms with high level of R&D
employment might have stock returns that are more sensitive to demand shocks (e.g. due
to existing stock of knowledge) rather than supply shocks, giving them a larger elasticity.
They have already build up the portfolio and, thus, are less reliant on generous workers.

Story 2: Differences in compensation schemes. Larger firms might rely more on
stock compensation to motivate workers (they do in the data). Thus, their R&D wages are
more sensitive to the stock-market for “nefarious” reasons.
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E Online Empirical Appendix

E.1 Calculating the Labor Share in R&D

I calculate the labor share in R&D for the US in 2000 and 2019 using the “All industries”
data reported in the 2000 Survey of Industrial Research and Development (SIRD), which
was conducted by the Division of Science Resources Statistics within the National Science
Foundation (NSF), and the 2019 Business Enterprise Research and Development Survey
(BERDS), which was conducted by the National Center for Science and Engineering Statis-
tics (NCSES) and Census Bureau. In both cases, I first calculate the attributable R&D
costs, which excludes undefined costs and includes imputed opportunity cost for capital,
and then report the share of labor costs thereof. For the 2000 figures I make a range
of adjustment to capture costs that are reported in detail in 2019, but lumped into an
"Other" category in 2000. These adjustments are based on the 2019 values reported for
these categories and detailed in the footnotes of Table E.1.

As reported in Table E.1, the labor share of attributable R&D costs was 79% in 2019
and 70% in 2000 yielding an average of 74.5%. The remainder of the costs is split between
“materials and equipment” and capital, where the former tends to be more important.
Notably, the labor share in R&D costs is significantly higher than the labor share in the
US overall, which is typically reported around 67% [ADD CITATION HERE]. Hence, R&D
is a very labor intensive task, justifying the focus on labor markets in R&D.
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Table E.1: National Labor Share in R&D

2000 2019

A. Raw R&D costs [% thereof]

Raw R&D cost 199.5 493.0
R&D wages and benefits 84.2 [42.2%] 268.0 [54.4%]
Stock-based compensation 12.3 [6.1%]∗ 39.0 [7.9%]
Temporary staffing 6.7 [3.4%]∗ 21.4 [4.3%]
Materials and supplies 28.1 [14.1%] 34.4 [7.0%]
Royalties and licensing fees 3.7 [1.9%]∗ 9.2 [1.9%]
Expensed equipment 2.9 [1.5%]∗ 7.2 [1.5%]
Lease and rental payments 3.3 [1.7%]∗ 8.2 [1.7%]
Depreciation 4.0 [2.0%] 18.9 [3.8%]
Other 54.2 [27.2%]∗ 86.6 [17.6%]

B. Attributable R&D cost

Raw R&D costs 199.5 493.0
– Other - 54.2 - 86.6
+ Imputed cost of capital 2.0 9.4
Attributable R&D costs 147.3 415.8

C. Attributable costs shares [% thereof]

Materials and equipment 34.8 [23.6%] 50.9 [12.2%]
Capital 9.3 [6.3%] 36.5 [8.8%]
Labor 103.2 [70.1%] 328.4 [79.0%]

Notes: Values in Panel A are taken from the source noted in the text except those
market with ∗, which are imputed. Labor related values are imputed to keep con-
stant their relative size to R&D wages and benefits. Other values are imputed to
keep constant their relative size to overall R&D. Finally, the “Other” category is ad-
justed such that the individual items add up to raw R&D cost. Panel B calculates
attributable R&D costs as raw R&D cost minus other cost plus cost of capital. The
latter are imputed as 50% of depreciation, which is in line with an interest rate of
7.5% and depreciation rate of 15%. The final panel categorizes R&D costs into mate-
rials and equipment, capital, and labor. Materials and equipment includes materials
and supplies, royalties and licensing fees, and expensed equipment. Capital includes
depreciation, lease and rental payments, and imputed cost of capital. Labor includes
R&D wages and benefits, stock-based compensation, and temporary staffing.
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