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Abstract

This paper provides evidence that declining allocative efficiency in the R&D
sector contributed to the recent slowdown in US productivity growth. I develop
a growth accounting framework with rich firm heterogeneity including frictions,
which are captured by a wedge between the marginal cost and benefits of R&D.
The model growth rate depends on a summary statistic for allocative efficiency
in the R&D sector, which is decreasing R&D wedge dispersion. I show that
R&D wedges can be measured from R&D returns—the ratio of the value created
from R&D to its cost—and measure them for US-listed firms for 1975–2014.
I document large and persistent differences in R&D returns and present evi-
dence suggesting financial frictions, adjustment costs, and monopsony power as
drivers. Combining data and model, I estimate that frictions reduced economic
growth by 18% and that declining allocative efficiency can account for 30% of
the observed growth slowdown.
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1 Introduction
U.S. productivity growth has slowed down significantly in the last two decades. While
productivity grew at a pace of 1.8% per year in 1949–1995, this rate declined to 1.2%
in 2005–2018 (Aghion et al., 2023). This development is concerning as economists
have long recognized productivity, or the rate at which an economy creates output
from production factors, as a key driver of prosperity (Solow, 1956).

In (semi-)endogenous growth theory, productivity grows through innovation brought
by research and development (R&D) investments (Romer, 1990; Aghion and Howitt,
1992; Jones, 1995). Slower growth can then be due to a decline in either R&D invest-
ments or the rate at which they translate to productivity growth, R&D productivity.
Empirically, U.S. R&D investment has remained stable or grown with 2.6% of GDP
invested into R&D for 1970–95 compared to 2.9% for 2005–18. Thus, this framework
suggests that slower growth is driven by lower aggregate R&D productivity.

Growth (↓) = R&D Investment (−/ ↑)× R&D Productivity (↓).

In this paper, I provide evidence that lower aggregate R&D productivity is partly
due to rising misallocation in the R&D sector. While some firms appear to invest
too much in R&D relative to the inventions they produce, others do too little, and
increasingly so. Quantitatively, my estimates suggest that this channel accounts for
an 11% slower growth rate, or around 30% of the overall growth slowdown docu-
mented above. Lower growth is, thus, not only driven by declining firm-level R&D
productivity, as argued in Bloom et al. (2020), but also by a declining efficiency at
which R&D resources are allocated among innovative firms.

I reach these conclusions based on a growth accounting framework nesting workhorse
growth models. In the model, firms with potentially different R&D productivity hire
R&D workers to maximize the private value created from innovation. I introduce
frictions flexibly by allowing for exogenous R&D wedges in firms’ first-order condi-
tions that distort firms’ demand for R&D inputs and which can be interpreted as
implicit taxes on R&D expenditure. Growth occurs as a by-product of innovation,
however, I allow for a potential gap between the private value created from innovation
and its growth impact, which I refer to as impact-value factor. All else equal, firms
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with low impact-value factors conduct too much R&D from the perspective of growth
maximization as they create a lot of private value, but little growth.

The model allows for a closed-form solution of the economic growth rate that can
be decomposed into its frictionless level and an adjustment factor capturing resource
misallocation due to R&D wedges, which I refer to as R&D Allocative Efficiency. With
a common impact-value factor, which is the baseline case in the literature, variation in
R&D wedges reduces allocative efficiency by pushing the distribution of relative R&D
efforts away from their growth-maximizing optimum—an R&D sector equivalent of
Hsieh and Klenow (2009). Heterogeneity in impact-value factors can amplify, dampen,
or even overturn this result. On the one hand, if firms with low impact-value factors
also have low R&D wedges, then misallocation is even worse as R&D wedges push
firms that already invest too much in R&D from a growth-maximizing perspective
to do even more. On the other hand, the growth-maximizing R&D policy uses R&D
wedges to offset differences in impact-value factors and maximize allocative efficiency.

I consider several extensions. First, my framework assumes that firms operate
a single R&D production function. I show that my results equivalently apply in a
framework with multi-research line firms as in Klette and Kortum (2004), however,
the counterfactual holds constant the number of research lines across firms. Second,
frictions are more costly under free entry of R&D firms as they tend to push up the
wage of researchers and, thereby, reduce entry and the mass of research firms. Third,
the formulae readily extend to the case in which R&D inputs are imperfect substitutes
across firms. In this case, frictions tend to be less costly due to lower gains from input
reallocation. Finally, my baseline framework assume a fixed supply of R&D inputs,
but the formulae extend to a positive aggregate R&D supply elasticity. In this case,
the level of frictions has a direct effect on growth, while it does not in the case of
fixed supply of R&D inputs, in which only relative frictions matter.

Next, I propose a methodology to estimate the model primitives from firms’
patents and financial statements and apply it to a sample of US–listed firms from
1975 to 2014. I measure firms’ investment in innovation using R&D expenditure and
the resulting private value created using patent valuations. Through the lens of the
model, the ratio of value created and investment, which I refer to as R&D return,
provides a direct measure of R&D wedges. I experiment with a range of proxies for
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impact-value factors based on theory-motivated profitability measures or citations.
Together, these data provide me with the ingredients to estimate R&D Allocative
Efficiency and its impact on economic growth in my sample.

Before estimating the aggregate impact of R&D wedges, I investigate them at
the micro-level. In a frictionless benchmark economy as in Romer (1990) or Aghion
and Howitt (1992), firms equalize the marginal benefit to the marginal cost of R&D
and, thereby, the R&D return as well. In contrast, I find large and highly persistent
differences in measured R&D returns, and by extension R&D wedges. This finding
is reminiscent of the literature on misallocation in the production sector, which has
argued that dispersion in the return on capital is a strong indicator for an inefficient
allocation of capital across firms (David et al., 2016). Interestingly, I find that the
standard deviation of R&D returns is 42% larger than its counterpart for the re-
turn on capital, suggesting significant misallocation of R&D resources. Notably, this
dispersion is mostly among highly comparable firms. Quantitatively, 78% of the vari-
ation remains when focusing on differences among firms within 6-digit industry×year
cells only. Finally, the strong persistence of R&D returns—with an implied annual
auto-correlation coefficient around 0.9—suggest structural factors rather statistical
noise. Taken at face value, the measured dispersion in R&D wedge suggests that
frictions play an important role in shaping the allocation of R&D resources in the
economy and—perhaps surprisingly—even among US-listed firms.

I perform numerous robustness exercises and find large measured R&D return
dispersion throughout. First, following Bloom et al. (2020) I consider sales and em-
ployment growth as alternative measures of the private value of R&D output and
find larger dispersion in the resulting R&D returns. Second, I follow complementary
bootstrap and structural approaches to estimating the prevalence of measurement
error and find no evidence for a strong measurement error component in R&D return
dispersion. Lastly, I investigate a range of additional mechanisms directly, including
the acquisition of innovative firms, fixed costs in R&D, knowledge capital, and al-
ternative assumptions around the valuation of patents, and, again, find no evidence
that they significantly contribute to measured R&D return dispersion. It, thus, ap-
pears that dispersion in measured R&D wedges is not driven by measurement details,
suggesting potentially economic drivers.
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R&D wedges measure frictions in the model, however, I find that they are sur-
prisingly hard to predict with empirical proxies thereof. For example, they are un-
correlated with the return on capital, a measure of investment frictions in physical
capital, suggesting that both forms of investment are subject to different frictions.
Similarly, R&D returns are not consistently correlated with direct measures of finan-
cial frictions, which are typically considered to be particularly important for R&D
investments due to a lack of collateral value (Brown et al., 2009; Ewens et al., 2022).
The strongest predictors for R&D returns are R&D employment and measures of firm
expansion such as rising R&D investment or TFP growth. The former is in line with a
framework in which monopsony power over inventors increases with their employment
(Berger et al., 2022; Yeh et al., 2022). The latter suggests a potential role for adjust-
ment frictions that lead to temporarily larger R&D returns during expansions due to
a gradual adjustment process of R&D investment and vice versa (Asker et al., 2014).
Lastly, the relationship of R&D wedges and impact-value factors is ambiguous. While
I find positive correlations using theory-based profitability or markup measures, I find
negative correlations for proxies measuring growth impact with patent citations.

At the aggregate level, I estimate that growth is significantly slower due to low
R&D Allocative Efficiency and increasingly so. For the full sample, I estimate that
economic growth is 18% lower due to R&D wedges, implying a frictionless annual
growth rate of 1.9% against a realization of 1.5%. For comparison, Hsieh and Klenow
(2009) estimate that US productivity would improve by 40% under the first-best factor
allocation, while Berger et al. (2022) estimate a 21% output improvement in absence
of monopsony in the production sector. Naturally, achieving the frictionless growth
rate might not be feasible in practice if R&D wedges are the product of technological
or information frictions that cannot, or should not, be adjusted for.

Comparing the 1975–90 and 2000–14 period, I find that the evolution of R&D
wedges alone yields an 11% lower growth rate in the latter period with associated
welfare costs around 5%. According to these estimates, rising frictions can account
for up to 30% of the 1.8%−1.2%

1.8% ≈ 33% slowdown in economic growth documented in
Aghion et al. (2023). Thus, my estimates suggest that slower growth and lower R&D
productivity is partly due to rising misallocation in the R&D sector with significant
adverse implications for welfare.
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Literature. This paper contributes to three strands of the literature. First, I comple-
ment the growing literature investigating the recent slowdown in economic growth by
highlighting the importance of private frictions (Syverson, 2017). Similar to Akcigit
and Ates (2021) and Olmstead-Rumsey (2022), I argue for declining aggregate R&D
productivity as a core driver, however, I attribute this change to rising misallocation
instead of declining micro-level R&D productivity or knowledge spillovers.1 This per-
spective is similar to de Ridder (2023), Aghion et al. (2023) and Ayerst (2022), who
propose models in which rising misalignment between the private incentives for R&D
and its growth impact leads to R&D misallocation and, thereby, a slowdown in eco-
nomic growth. Instead, I focus on the contribution of private frictions, as captured by
R&D wedges, and follow a sufficient statistic approach allowing for a direct mapping
between data and model, rather than structural estimation. I estimate that rising
frictions can account for 30% of the growth slowdown documented in the literature.

Second, I provide a new framework to investigate the drivers of aggregate R&D
resource allocation and productivity. The early endogenous growth literature first
identified innovation as the main driving force behind economic growth and high-
lighted the potential for under- or over-provision of innovation due to externalities
(Romer, 1990; Aghion and Howitt, 1992). More recent contributions have focused
on the allocation of R&D resources across firms, which might be inefficient under
the presence of heterogeneity in spillovers or firms’ ability to benefit from inventions
of a given quality (de Ridder, 2023; Mezzanotti, 2021; Aghion et al., 2023; Akcigit
et al., 2022; Manera, 2022). My framework is closely connected, but differs along
several dimensions. First, I allow for private frictions and estimate that they have
a significant impact on economic growth. Second, I develop a closed-form growth
rate decomposition clarifying how frictions and impact-value factors shape economic
growth. Importantly, both factors can offset or amplify each other and, thus, require
a joint treatment. Third, my framework aims to be comprehensive across mechanisms
by measuring reduced form wedges in the data. At its best, this approach can take
into account a range of economic forces simultaneously, however, it cannot isolate
individual channels without further information.
1Bloom et al. (2020) also argue that aggregate R&D productivity has declined, however, their focus
is a long-run, steady decline in R&D productivity as “ideas are getting harder to find,” in line with
the predictions of semi-endogenous growth theory (Jones, 1995).
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Third, I contribute to the literature on factor misallocation by providing evidence
on its pervasiveness in the R&D sector. Restuccia and Rogerson (2008) and Hsieh
and Klenow (2009) first argued that capital misallocation across firms, as captured
by dispersion in the return on capital, significantly reduces aggregate productivity in
the US and can explain a significant share of the productivity gap between developed
and developing countries. The subsequent literature investigated potential drivers
of dispersion in the return on capital and found that it is surprisingly difficult to
attribute to individual mechanisms, which I also find for R&D returns (Asker et al.,
2014; Midrigan and Xu, 2014; David et al., 2016). I complement the literature by
focusing on R&D investments instead of static production factors, which introduces
a dynamic component linking factor return heterogeneity to the productivity growth
rate instead of its level. Similar to the results in Hsieh and Klenow (2009) for the
production sector, my framework allows for a closed-form solution and direct link
to the data. Perhaps surprisingly, I show that the sources of frictions appear to be
different for capital and R&D investment. For example, my measure of frictions, the
R&D return, is uncorrelated with the return on capital, which is often considered a
summary measure of frictions in the production sector. I also find mixed evidence on
the contribution of channels discussed prominently in the literature such as govern-
ment subsidies or financial frictions. In contrast, König et al. (2022) find that product
market frictions led to an inefficient R&D allocation in China. Similarly, financial
frictions are often considered to be particularly severe in the case of intangible in-
vestments, including R&D (Brown et al., 2009). My focus on US–listed firms and
differences in institutional context appear to be a likely explanation of the contrast-
ing findings. The strongest predictor of frictions in my sample is R&D employment,
which could be rationalized, e.g., by increasing monopsony power exerted by large
employers (Berger et al., 2022). Such a channel could also explain rising frictions in
light rising overall concentration documented, e.g., in Autor et al. (2020).
Organization. Section 2 presents the model and derives the main formulae. Sec-
tion 3 discusses data and measurement. Section 4 establishes stylized facts for the
measured frictions and investigates potential underlying mechanisms. Section 5 com-
bines data and theory to investigate the impact of frictions on economic growth, while
Section 6 concludes.
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2 Theory
This section introduces a heterogeneous firms growth model allowing for a direct
assessment of the growth impact of frictions. The framework is sufficiently general to
nest alternative growth theory traditions (Romer, 1990; Aghion and Howitt, 1992).

2.1 Model Setup
Time is infinite, discrete, and indexed by t.
Production. Output is the product of productivity At and production labor Lt · L̃:

Yt = At · Lt · L̃, (1)

Productivity encompasses technological efficiency and static production frictions such
as markups.2 I focus on its evolution based on changes in technological efficiency only.
Firms. There is a unit mass of innovative firms indexed by i hiring R&D input ℓit
at input price Wt to achieve mass zit of innovations:3

zit = φit · ℓγit with 0 < γ < 1. (2)

Firms assign value Vit to innovations, which I take as given. In workhorse growth
models, this value is linked to resulting profits and innovation opportunities (Romer,
1990; Aghion and Howitt, 1992).4 Firms are subject to R&D wedge ∆it such that
their equilibrium R&D input choice ℓ∗it satisfies

∂zit
∂ℓit

∣∣∣
ℓit=ℓ∗it

· Vit = (1 + ∆it) ·Wt. (3)

The left-hand side is the marginal benefit of research input, while the right-hand
side is the marginal cost adjusted for the R&D wedge. If ∆it = 0, we recover the
frictionless benchmark in which firms equalize marginal benefit and cost. Otherwise,
firms’ choices are distorted relative to the benchmark with larger wedges resulting in
lower demand for R&D inputs.
2Peters (2020) decomposes productivity into markup heterogeneity and technological efficiency. My
results are compatible as long as markup heterogeneity is constant and independent of frictions.

3Alternatively, zit can be interpreted as the arrival rate of inventions in a continuous time setup.
4I provide examples of Vit for alternative microfoundations in Appendix F.
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In theory, there could be many potential mechanisms driving variation in R&D
wedges ∆it across firms including financial frictions, adjustment costs or capacity con-
straints, market power in the R&D input market, and R&D subsidies. For example,
high R&D wedges can capture constraints on firms’ choice of R&D inputs due to
financial frictions or adjustment costs (Midrigan and Xu, 2014; Asker et al., 2014).
Similarly, low R&D wedges can capture R&D subsidies, which reduce firms’ marginal
cost below the market price (Hsieh and Klenow, 2009). I discuss these and other
mechanisms in Online Appendix F and take R&D wedges as given. Naturally, the
nature of R&D wedges in practice determines whether we should interpret them as
technological facts or as objects subject to economic policy.
Factor markets. Aggregate R&D input Lt is exogenous, capturing the idea that
research talent is scarce and supplied inelastically (Goolsbee, 2003; Wilson, 2009):

Lt =

∫ 1

0

ℓit · di. (4)

This assumption puts emphasis on the allocation of inputs within the R&D sector
instead of across the production and R&D sector. An alternative interpretation is
that R&D policy already fixes the size of the R&D sector at the optimal level, such
that the allocation of resources within it remains the relevant margin of concern.5

Growth. Productivity grows through innovation and its growth rate is the aggregate
of the mass of inventions times their growth impact. The latter is linked to an
inventions’ value to the firm via the impact-value factor ζit, which acts as an exchange
rate between both concepts. Firms with a large impact-value factor contribute more
productivity growth per dollar of private value created. The growth rate is given by

gt ≡
At+1 − At

At

= A−ϕ
t ·

∫ 1

0

ζit · zit · Vit · di, (5)

where ϕ ≥ measures the strength of the “phishing-out” effect that is necessary to
achieve balanced growth in a semi-endogenous growth framework (Jones, 1995).
5Note, also, that this assumption implicitly rules out any direct waste of R&D resources linked to
R&D wedges, e.g., due to “real” adjustment cost. Any adjustment costs, thus, should take the
form of either production labor or cash payments. This setup can capture, for example, hiring
and recruiting costs, but fails to capture concerns such as lower productivity of newly hired R&D
workers or temporary skill mismatch.
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Impact-value factor ζit has a prominent role in the growth literature as it deter-
mines the degree to which firms’ incentives are aligned with a growth-maximizing
planner. The early endogenous growth literature emphasizes that firms might not be
able to appropriate the full value generated from their innovation to society, implying
that social value exceeds private value or ζit > 1 (Romer, 1986). On the other hand,
the Neo-Schumpeterian literature argues that the business stealing effect acts as a
counterbalancing force as firms do not take into account the economic damage im-
posed on firms that are made obsolete by competitor innovation (Aghion and Howitt,
1992). In recent contributions, differences in impact-value factors occur as some firms
are able to earn larger profits from a given invention, better at protecting their intel-
lectual property, or less prone to be replaced by challengers (Akcigit and Ates, 2021;
de Ridder, 2023; Mezzanotti, 2021; Aghion et al., 2023; König et al., 2022; Manera,
2022; Olmstead-Rumsey, 2022). I discuss these microfoundations in Online Appendix
F and, as in the case of R&D wedges, take them as given here.6

Consumer Welfare. Households have discount factor β and CRRA utility over
per-capita consumption, which equals output in equilibrium:

W({Yt+τ}) =
∞∑
τ=0

βτ · (Yt+τ/(Lt+τ · (1 + L̃))1−σ − 1

1− σ
. (6)

This formulation ignores the direct effect of population growth and, thereby, allows
for a more direct comparison across economies with and without population growth.
Equilibrium. I use two simplified equilibrium definitions in deriving the main re-
sults. The Competitive Equilibrium respects the equation detailed above.

Definition 1. For a given Y0 and {Lt}t=0,...,∞, a Competitive Equilibrium is a se-
quence {{Vit, φit,∆it, ζit, ℓit}i∈[0,1],Wt, gt, Yt}t=0,...,∞ satisfying equations (1)-(5).

The Planner Equilibrium instead allocates R&D inputs to maximize growth.

Definition 2. For a given Y0 and {Lt}t=0,...,∞, a Planner Equilibrium is a sequence
{{Vit, φit, ζit, ℓit}i∈[0,1], gt, Yt}t=0,...,∞ maximizing economic growth {gt}t=0,...,∞ period-
by-period and satisfying equations (1), (2), (4), and (5).
6Another sources of divergence between private and planner valuation of innovation are knowledge
externalities, which are not captured explicitly (Bloom et al., 2013; Akcigit and Kerr, 2018).
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2.2 Results
As show in Proposition 1, the equilibrium economic growth rate can be decomposed
it into three terms. The first two terms jointly characterize the growth rate in a
competitive equilibrium, i.e., in absence of R&D wedges. I discuss the economic
interpretation of both components below when considering optimal R&D policy. The
third term, which I refer to as R&D Allocative Efficiency, captures the impact of R&D
wedges.7 R&D Allocative Efficiency depends on the distribution of R&D wedges, but
not their average level. Intuitively, any aggregate excess or insufficient demand for
R&D resources is balanced by the R&D input price due to the fixed aggregate supply
of thereof and, thus, does not have a direct impact on economic growth.

Proposition 1. Under equations (2)-(5), we can express the economic growth rate
in a Competitive Growth Equilibrium as the product of three terms:

gt =
Lγ
t

Aϕ
t

·
(∫ 1

0

(θit · ζit)
1

1−γ di

)1−γ

︸ ︷︷ ︸
= Frontier Growth Rate gFt

(∫ 1

0

ωit · ζ̃
1

1−γ

it di

)γ−1

︸ ︷︷ ︸
≡ Policy Opportunity Λt

∫ 1

0
ωit · ζ̃it · (1 + ∆it)

− γ
1−γ di(∫ 1

0
ωit · (1 + ∆it)

− 1
1−γ di

)γ
︸ ︷︷ ︸

≡ R&D Allocative Efficiency Ξt

,

where ζ̃it ≡ ζit/
(∫ 1

0
ωit · ζitdi

)
and ωit ≡ θ

1
1−γ

it /
( ∫ 1

0
θ

1
1−γ

it di
)

are the normalized
impact-value factor and an R&D productivity weight, respectively, with R&D pro-
ductivity θit ≡ φit · Vit.

To get a better understanding of R&D Allocative Efficiency, it is useful to first con-
sider the case where impact-value factors are constant or, alternatively, independent
of R&D wedges. We, thus, assume that particularly constrained firms do not sys-
tematically create more or less growth impact per private value created. In this case,
dispersion in R&D wedges strictly reduces economic growth as shown in Corollary
1. Intuitively, dispersion in R&D wedges leads to misallocation of R&D resources
as firms with high wedges hire too few R&D workers and vice versa. Resultingly,
we have a growth-model equivalent to the impact of “output-wedges” on aggregate
productivity in Hsieh and Klenow (2009).
7The word “efficiency” is an imperfect choice here, since full efficiency might not be achievable, e.g.,
due to adjustment frictions. Furthermore, depending on the impact-value factor, there are scenarios
with above 100% efficiency as explained below. Nonetheless, it captures the nature of the term as
a deviation from the frictionless benchmark.
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Corollary 1. Suppose ζit is independent of (1 + ∆it)
− γ

1−γ , then R&D Allocative
Efficiency depends on the joint distribution of R&D wedges and productivity only:

Ξt =

∫ 1

0
ωit · (1 + ∆it)

− γ
1−γ di(∫ 1

0
ωit · (1 + ∆it)

− 1
1−γ di

)γ .
Up to a 2nd-order approximation, R&D Allocative Efficiency is strictly decreasing in
their dispersion and achieves a maximum of 1 if R&D wedges are equalized.

The analysis becomes slightly more complex once we relax the assumption of
orthogonal impact-value factors as highlighted in Proposition 2. As long as R&D
wedges and impact-value factors have a positive, or at worst weakly negative, corre-
lation, we can understand them as either amplifying or dampening R&D wedges. In
particular, if there is positive correlation, i.e., if particularly constrained firms also
achieve a high growth impact per dollar of private value created, then impact-value
factors amplify the misallocation created from R&D wedges and vice versa.

Proposition 2. Let the ωit–weighted covariance of log R&D wedges and impact-value
factors, σ∆,ζ be greater than minus half the ωit–weighted variance of log R&D wedges,
σ2
∆. Then, up to a 2nd-order approximation, we have

Ξt =

∫ 1

0
ωit · (1 + ∆it)

− γ
1−γ

·β̃di(∫ 1

0
ωit · (1 + ∆it)

− 1
1−γ

·β̃di
)−γ ,

where adjustment factor β̃ =
√
1 + 2 · β depends on β ≡ σδ,ζ

σ2
δ

, which is the weighted
OLS coefficient when regressing impact-value factors on R&D wedges in logs.

A couple of examples highlight the underlying economics. Suppose young firms
are financially constrained and less skilled in extracting rents from their inventions,
e.g., because of fewer legal resources to defend their patents, such that they have large
R&D wedges and impact-value factors. Then, R&D wedges are more costly for growth
since such firms would have invested insufficiently in R&D even without wedges, but
are now pushed even further away from the optimal R&D employment. Alternatively,
consider a world in which large firms have market power over inventors but are also
more skilled in extracting rents from inventions, such that firms with high R&D
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wedges (due to monopsony power) tend to have lower impact-value factors. Then,
market power pushes the allocation of R&D workers away from low impact-value
factor firms and, thus, is less costly in terms of growth.

R&D wedges are closely linked to optimal growth policy, which I discuss in Propo-
sition 3. To achieve maximal growth, the planner introduces a perfect negative cor-
relation of R&D wedges and impact-value factors by using the subsidy component of
R&D wedges to offset any frictions and heterogeneity in impact-value factors. This
allocation achieves the frontier growth rate by setting Λt ·Ξt = 1, which suggests that
any Λt · Ξt < 1 yields a growth rate within the economy’s growth possibility frontier.
The key intuition is that firms maximize value, while the planner wants to maximize
growth. As long as both are not perfectly aligned, the allocation of R&D inputs is
inefficient from the perspective of growth maximization.

Proposition 3. Let g∗t be the growth frontier achieved in the Planner Growth Equi-
librium, then g∗t = gFt . Furthermore, this allocation can be achieved by setting the
R&D subsidy component of ∆it such that ζit · (1 + ∆it) is constant across firms.

2.3 Extensions
I consider several model extensions in Online Appendix E.1.
Free entry. The model assumes a fixed mass of innovative firms, however, changes
in the environment might affect firms’ incentives to enter and exit the economy. I
show that allowing for entry can amplify the cost of private frictions. R&D wedges
reduce the expected profits of innovative firms due to rising input costs, resulting
in lower entry. Fewer firms implies more researchers per firm, which reduces their
productivity due to decreasing returns to scale and, thus, lowers growth.
Multi-research line firms. A long tradition in endogenous growth has modeled
the innovation sector with multi-research line firms (Klette and Kortum, 2004). The
distribution of research lines is an endogenous object in this class of models, driven by
firms’ innovation. I show that the formulae developed above extend to this alternative
framework, however, the counterfactual holds constant the distribution of research
lines across firms. The estimated growth impacts are conservative if firms that expand
in absence of frictions also tend to be more productive.
Specialization in input markets. The recent literature on labor market power
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emphasizes that firms might be imperfect substitutes for workers due to amenities or
specialization, which may limit the gains from reallocation (Card et al., 2018; Berger
et al., 2022). I show that the formulae developed above are preserved under this
scenario with a lower implied scale elasticity γ reflecting specialization. Resultingly,
R&D wedges tend to be less costly due to lower gains from reallocation.
Abundant resources. The model assumes fixed aggregate R&D inputs, implying
that the level of R&D wedges does not affect growth. I show that the formulae
derived above extend to the case with positive input supply elasticity, however, there
is a supply adjustment term depending on the average R&D wedge. The gains from
reallocation thus coincide as long as this average remains constant. The formulae
also extend to multiple R&D production factors as long as their supply is perfectly
inelastic and frictions are common at the firm-level.

3 Data and Measurement
3.1 Data
I focus my empirical analysis on research-active firms listed on US stock exchanges as
there is sufficient data available to measure the model primitives and directly apply
the formulae developed above. The proposed measurement approach requires three
pieces of information on R&D: expenditure, value created, and growth impact.

I obtain annual firm-level R&D expenditure from WRDS Compustat, which col-
lects the information from mandatory filings. This data also reports firms’ industry
classification and additional accounting data including annual sales and employment.

I use patents to measure the private value created from R&D and its growth
impact. Patents are arguably the most direct measure of R&D output available to
researchers. They capture an invention that the issuing patent office, here the US
Patent and Trademark Office (USPTO), deemed both new and useful. Patents grant
the owners exclusive rights to the use of inventions described therein, giving firms
strong incentives to patent. Nonetheless, using patents might yield an incomplete
picture as not all inventions are patented (Cohen et al., 2000). I propose to ad-
dress this concern by focusing on firms that tend to use patents and by investigating
robustness using measures independent of the patent system.

I use patent valuation estimates from Kogan et al. (2017) to measure the pri-
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vate value created from innovation. Their methodology uses the firm’s stock returns
around the patent announcement to estimate its value such that larger returns are
translated into higher valuations. Patent valuations directly capture the private value
of an invention, which is directly linked to firms’ incentives to innovate. In contrast,
other patent-based measures of innovation, such as raw counts or citations received,
capture the quantity of innovation, but not its value to the firm. As discussed in
the previous section, divergence between the two concepts is an important object of
interest when estimating the aggregate impact of private frictions.

I consider forward-citations as a measure of the growth impact of R&D as I discuss
below. I construct forward-citations, i.e., citations received, by the patent within the
first 5 years since its grant date using the USPTO Patentsview’s citations files. Limit-
ing the time-window ensures that patents granted earlier do not mechanically receive
more citations. I normalize citations by their average value within an application
year to make them comparable across years.

I aggregate citations and patent valuation to the firm-year-level using the patent-
to-firm mapping developed in Kogan et al. (2017). Patents are recorded in their
application year to reflect the timing of innovation. The final dataset has annual
observations of firm-level R&D expenditure, patent valuations, and forward-citations.

I restrict the sample to 1975–2014 and drop firms with consistently low R&D
expenditure (less than 2.5m 2012 USD per year), low patenting (less than 2.5 patents
per year) or less than 5 years in sample. The final sample covers more than 80% of
R&D expenditure in Compustat and patent valuations in Kogan et al. (2017) as well
as 40% of the R&D recorded in BEA accounts. See Appendix B for further details.

3.2 Measurement
R&D Allocative Efficiency depends on four parameters: {γ, {ωit,∆it, ζit}}. There is
a consensus in the literature on setting γ = 1/2, which implies an elasticity of R&D
expenditure to unit cost of -1 (Acemoglu et al., 2018; Akcigit and Kerr, 2018).

R&D wedges can be measured up to a constant factor directly from the average
R&D return, i.e., the ratio of value created from R&D divided by its cost:

zitVit
Wtℓit

=
1

γ
· (1 + ∆it).
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Through the lens of the model, firms with high R&D returns appear more constrained,
implying larger wedges. Key for this interpretation are common, log-linear production
and cost functions, which yield proportional marginal and average returns and are
standard in the literature (Gancia and Zilibotti, 2005; Aghion et al., 2014).8

I measure R&D wedges over 5-year windows with a 1-year lag between R&D
expenditure and patent valuations:9

1̂ + ∆it = γ ·
∑4

s=0 Patent Valuationsit+s∑4
s=0 R&D Expenditureit−1+s

.

Three measurement concerns arise immediately. First, R&D return dispersion
may arise due to differences in the scale elasticity of the innovation production func-
tion γ across firms. Without adjustment, one would confound those for differences in
R&D wedges. I, thus, residualize measured R&D wedges with respect to industry ×
year cells under the assumption technology is similar within industries. Secondly, ac-
curate measurement of R&D wedges requires ex-ante expected R&D returns as firms
equalize expected marginal benefits to marginal costs.10 However, realized R&D re-
turns might differ from their expected value due to the uncertainty inherent in the
innovation process. Thus, I restrict the sample to observations with at least 50 patents
to leverage the law of large numbers in closing the gap between averages and expecta-
tions. This approach does not safeguard against ex-post firm-level shocks that yield
common variation in realized patent valuations and which I investigate separately.
Finally, not all inventions are patented and the share patented might differ across
firms (Cohen et al., 2000). Such differences may lead to variation in measured R&D
returns due to patenting choices rather than R&D wedges. Following Bloom et al.
(2020), I use non-negative changes in sales, employment, or the ratio thereof as al-
ternative measures of innovation output following the idea that successful inventions
lead firms to expand. My alternative measure of R&D wedges is then
8More generally, the equilibrium average R&D return is the ratio of marginal scale elasticities for the
cost and R&D production function. In models where these are constants, i.e. where both functions
take the form of A · ℓB with B being a parameter, the average R&D return is thus a constant.

9R&D Allocative Efficiency is homogeneous of degree 0 in 1 + ∆it and, thus, unaffected by γ.
10The model in Section 2 assumes no uncertainty around the value or quantity of inventions. In

general, the appropriate value is the expected discounted value created from innovation, which is
proportional to the expected value under homogeneous discount rates and a common gap between
investment and realization.
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1̂ + ∆it = γ ·
∑4

s=0 max{ Xit+s −Xit+s−1, 0}∑4
s=0 R&D Expenditureit−1+s

with X ∈ {Sales, Empl.,
Sales
Empl.

}.

I discuss additional concerns in conjunction with results and in Section 5.3.
R&D productivity can be measured from firms’ first-order conditions as

θit = (1 + ∆it)× (Wt · ℓit)1−γ ·W γ
t .

Note, again, that the formulae developed above are scale independent such that
I can drop the common wage intercept.11 Thus, I measure R&D productivity as

θ̂it = (1̂ + ∆it) ·

(
4∑

s=0

R&D Expenditureit−1+s

)1−γ

.

I consider three approaches to measuring the impact-value factor and estimating
its relationship to R&D wedges. In the first approach, I follow the workhorse growth
models and assume a constant factor across firms. In the second approach, I use
measure impact-value factors from markups guided by the result that they directly
linked to them in a limit-pricing setup. Firms with high quality innovation have
large markups, but are not fully able to capture the additional social value created
by the higher innovation quality.12 I measure markups either using the estimates in
Loecker et al. (2020) or, alternatively, via the value implied by firms’ profit rates.
The impact-value factor is then given by

ζ̂it = µ̂it or ζ̂it =

∑4
s=0 Salesit∑4

s=0 Salesit −
∑4

s=0 Profitit

. (7)

In the third approach, I propose a direct measure of the growth-impact of inven-
tions and use it to measure the impact-value factor. A natural starting point is the
11If wages are heterogeneous across firms, then my measurement of θit captures productivity and

wage heterogeneity. Unfortunately, my data does not allow me to directly adjust for price differ-
ences in R&D inputs across firms.

12In particular, let λi > 1 be the quality improvement over a potential competitor in a model with
limit pricing. Then, profits are proportional to markup 1 − λ−1

i , however, the growth impact is
proportional to λi − 1. The impact-value factor is the ratio of both, which is proportional to λi

itself. Thus, we can use either markups or profit rates to back-out the implied λi.

16



ratio of patent citations to valuations, which would be accurate if citations measure
the growth impact of an invention up to a constant factor:13

ζ̂it =

∑4
s=0 Patent Citationsit+s∑4

s=0 Patent Valuationsit−1+s

. (8)

One potential concern with this measure is heterogeneity in citation conventions
across industries or time that affect the relative frequency of citations even if growth
impacts are comparable.14 I thus residualize measured impact-value factors with re-
spect to industry×year fixed effects. Another, potentially more pressing, concern
when relating impact-value factor to the R&D return is that they might be related
by construction due to the use of patent valuations. I, thus, replace patent valuations
with changes in sales whenever I directly relate impact-value factor to R&D wedges.
I also resulting using the patent impact measure developed in Kelly et al. (2021) for
growth impact, which uses natural language processing to measure whether concepts
developed in a patent are subsequently adopted in new patents.

4 Exploring R&D Returns
Before estimating aggregate measures, I investigate the behavior of R&D wedges in
the data. I use the terms R&D wedges and R&D returns interchangeably here given
their measurement equivalence in my context.

4.1 Basic Facts
In the frictionless benchmark economy without subsidies, R&D wedges are equalized
across firms and, thus, measured R&D returns should be as well. Instead, I find
large dispersion in measured R&D returns as highlighted by their histogram plotted
in Figure 1. A firm at the 75th percentile of the distribution has close to twice the
median return in levels with a similar gap between the median and 25th percentile.
The standard deviation of log R&D returns is 0.9.

R&D return dispersion has increased throughout the sample. Comparing the
early and late sample in Panel B of Table 1, I find that R&D return dispersion has
13Ayerst (2022) employs this ratio with a similar interpretation. See Akcigit and Kerr (2018) for a

similar interpretation of patent citations.
14For example, citation counts likely depend on the degree to which innovation is cumulative, as,

e.g., in semi-conductors, rather than more independent of each other, as for molecules in drugs.
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Figure 1: R&D Returns are Highly Dispersed
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Notes: This figure plots the histogram of the log average R&D returns and
density function of a normal distribution with same mean and variance.
R&D returns are measured as the 5-year total patent valuation divided by
5-year R&D expenditures lagged by one year and residualized with respect
to industry×year fixed effects.

risen by 32%. Rising dispersion is a broad phenomenon with about 64% of industries
having more dispersed R&D returns in the later sample.

Finding large dispersion in investment returns echoes the literature on capital
investment. For example, Hsieh and Klenow (2009) document large differences in the
return on capital across US firms, whereas the frictionless investment model predicts
none. Importantly, this literature argues that the empirical dispersion in the return
on capital implies large losses in aggregate production vis-à-vis a return equalizing
allocation. Comparing dispersion in both returns in row 3 of Table 1, I find that
R&D return dispersion is 0.93/0.64− 1 ≈ 46% larger in my sample.

Large dispersion in R&D returns is not surprising if we expect significant mea-
surement error therein. At least three concerns might lead us to that believe. First,
we might be concerned about the use of patents to measure innovation as it has been
long recognized that not all inventions are patented (Cohen et al., 2000). R&D returns
might then reflect whether firms patent their inventions rather than their quantity
and value. One important dimension for this consideration is industry differences in
patenting conventions that could contribute to R&D return dispersion. For example,
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Table 1: Return Dispersion Across Comparison Groups

Within Cell R&D Return Return on Capital
SD SD ∆%

A. Across Industries
— 1.09 0.77 42%
Year 1.05 0.74 43%
NAICS3 × Year 0.93 0.64 46%
NAICS6 × Year 0.85 0.58 45%
B. Across Time
1975 – 2014 0.93 0.64 45%
1975 – 1990 0.74 0.46 62%
2000 – 2014 0.98 0.73 33%
C. Across Measures
Patent valuations 0.93 0.64 46%
∆ Revenue 1.11 0.64 73%
∆ Employment 1.35 0.64 111%
∆ Labor productivity 1.59 0.64 150%

Note: Return measures residualized with respect to fixed effects indicated in
first column. Column headers SD report standard deviations of return measure.
Columns headers ∆% indicate percent difference of Return on R&D dispersion
with respect to return in consideration. Returns are measured in logs.

patents are considered quite important in life science, but less so in manufacturing
(Mezzanotti and Simcoe, 2023). Empirically, I find that the contribution of such
cross-industry differences is small to overall R&D return dispersion. Variation across
firms in the same 6-digit industry and year accounts for 0.85/1.09 ≈ 78% of the overall
R&D return dispersion as reported in Panel A of Table 1. It is also not the case that
the importance of patenting is a strong predictor for within-industry dispersion. For
example, R&D returns are similarly dispersed within life science and manufacturing,
as reported in Appendix Table C.2, even though both industries differ significantly
in the degree to which they consider patents essential to their intellectual property
protection strategy. Furthermore, R&D return dispersion is a robust finding across
alternative measures of R&D output that do not rely on patents. For example, the
dispersion is 1.11/0.93−1 ≈ 19% larger when using revenue growth instead of patent
valuations to measure R&D output as reported in Panel C.15

15Naturally, these measures have measurement issues of their own, however, I find that they are
highly correlated with my preferred measure and, thus, appear to capture a common factor, as
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A second potential concern relates to the use of estimated patent valuations. Ko-
gan et al. (2017) estimate these by using a non-linear transformation of stock-market
return around the patent announcement window. This procedure likely entails some
measurement error as it becomes impossible to disentangle other events impacting the
firm concurrently from the patent value alone. To the degree that these confound-
ing events are quantitatively important and independent of each other over time, we
might thus expect that R&D returns are partly driven by classical measurement er-
ror and, thus, uncorrelated over time. Instead, I find that R&D returns are highly
persistent over time. The estimate reported in column (1) of Panel in Table 2 implies
an annual autocorrelation coefficient of 0.6971/5 ≈ 0.93. Importantly, all measures
of R&D returns are highly persistent over time as reported in Panel A of Table 2.
I propose a structural variance decomposition of R&D returns based on this insight
in Online Appendix G and find that purely transitory innovations in R&D returns,
such as classical measurement error, contribute almost none of the overall variation
therein. Another concern might be that the measurement approach assigns posi-
tive values to all patents by construction, however, there might be a large fraction
of patents that are truly worthless in practice (Jaffe and Lerner, 2007). I show in
Online Appendix D.1 that excluding low value patents from R&D returns does not
reduce their dispersion. Lastly, Kogan et al. (2017) assume that all patents have an
equal likelihood of being granted ex-ante to back out the value of innovation from
the stock return, which only reflects the unexpected component. In practice, this
likelihood likely differs across technology classes and might be larger for high value
patents. I investigate both concerns in Online Appendix D.1 and find that adjusting
for technology-class specific grant rates does not reduce R&D return dispersion and
that allowing the patent grant probability to increase with its valuations increases,
rather than decreases, measured R&D return dispersion.

A third and final concern might be the importance of measurement error re-
lated to the distinctions between expected returns, which should be equalized in the
frictionless model, and realized returns, which might not be. However, the strong
persistence in R&D returns suggests that their dispersion is unlikely due to the gap

reported in Panel B of Table 2.An exception to this finding is the measure using changes in labor
productivity, where the correlation is weaker. However, this measure is also most dispersed and,
thus, might be less reliable.
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Table 2: R&D Return Consistency across Time and Measures

Variable Estimate Std. err. R2 Observations
A. 5-Year Autocorrelation

Patent valuations 0.697∗∗∗ (0.020) 45.7% 7,623
∆ Sales 0.564∗∗∗ (0.024) 29.6% 7,455
∆ Employment 0.552∗∗∗ (0.026) 27.8% 6,447
∆ Labor Productivity 0.740∗∗∗ (0.026) 59.6% 7,411
∆ Market valuation 0.326∗∗∗ (0.029) 13.8% 3,731

B. Correlation with Baseline R&D Returns
∆ Sales 0.597∗∗∗ (0.033) 25.1% 11,688
∆ Employment 0.551∗∗∗ (0.038) 14.1% 10,870
∆ Labor Productivity 0.092∗ (0.051) 0.3% 11,582
∆ Market valuation 0.818∗∗∗ (0.023) 47.4% 6,749

Note: Each row reports the regression coefficient of a separate regression with dependent and independent
variable in logs. Panel A reports 5-year autocorrelation coefficients for alternative measures of R&D returns.
The respective R&D return is calculated as the ratio of the variable indicated in column 1 and R&D
expenditure at the 5-year level. Variables starting with ∆ cumulte non-negative changes in the indicates
variable over a 5-year period. Panel B reports contemporaneous correlations with alternative measures
of R&D returns as dependent variables and the primary measure of R&D returns as the independent
variable. The primary measure is the ratio of patent valuations to R&D expenditure at the 5-year
horizon. Alternative measures are calculated as in Panel A. All regressions control for NAICS3× Year fixed
effects and standard errors are clustered at the NAICS6 level. See text and Appendix for additional data details.

between expectations and realization as such differences are uncorrelated over time
under rational expectations. Nonetheless, I investigate whether “superstar patents”,
which we might expect to be important given the famously fat-tailed distribution
of innovation outcomes, contribute to R&D return dispersion by creating to large
differences between expectation and realization. My findings, as reported in Online
Appendix D.1, suggest otherwise. R&D return dispersion is essentially unaffected by
winsorizing patent valuations at the 95th percentile.

In summary, my robustness exercises suggest that neither measurement error
arising from the use of patents and patent valuations nor classical measurement error
appear to be significant drivers of R&D return dispersion.16 Online Appendix Table
C.1 further investigates robustness with respect to the specification and find that
neither expending the aggregation window for R&D inputs and outputs nor changing
the timing gap between both leads to lower R&D return dispersion. Focusing on
observations with significantly more patents reduces measured dispersion marginally.
16Online Appendix D.1 also considers misspecification arising form the presence of fixed costs, ac-

quisitions of innovative firms, and knowledge capital.
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4.2 Economic Drivers
I investigate potential economic drivers of R&D return dispersion in Table 3.17 First,
I investigate general investment frictions in Panel A. Following the idea that invest-
ment may be distorted across multiple margins, I investigate whether measures of
capital investment frictions correlate with R&D returns and find mixed results. On
the one hand, R&D returns are uncorrelated with the return on capital, which is con-
sidered a summary measure for investment frictions (David et al., 2016). On the other
hand, R&D returns are highly correlated with Tobin’s Q, which is also an established
measure of investment frictions (Whited and Wu, 2006). I also find mixed results
for financial frictions. Firms with more liquidity, which might be less constrained
by cash flow concerns, tend to have lower returns, in line with the idea that they
are less constrained. On the other hand, firms with large dividend payments, which
presumably are not very constrained either, have larger rather than smaller R&D
returns. Finding inconclusive results for measures of financial frictions is surprising
as a growing literature argues that intangible capital investments, including R&D,
are particularly constrained by them (Brown et al., 2009; Peters and Taylor, 2017).

Second, R&D return dispersion could be driven by firm-specific risk-premia due
to differential exposure to aggregate risk as argued by David et al. (2022) for the
case of the return on capital. As reported in Panel B, I find no evidence that firms’
stock market β, a common measure of systematic risk, have significant explanatory
power for R&D returns . However, it appears that firms whose patent valuations are
particularly volatile tend to have higher R&D returns. Such a risk-premium could
arise if firms’ decision makers are not able to fully diversify away the innovation risk.

Third, I investigate the importance of R&D subsidies in Panel C. As suggested
in Hsieh and Klenow (2009), investment subsidies distort returns by reducing the
true investment costs vis-à-vis reported costs such that firms with large subsidies
earn low reported returns. Using data on state-level R&D tax credits from Lucking
(2019), I find that the induced variation in R&D user costs only weakly correlates
with R&D returns. Similarly, measure of public co-ownership of firms’ patents or
overall investment tax credit do not explain a significant share of the overall reported
R&D return dispersion. Note, however, that these results only speak to the net-effect
17See Online Appendix F for the associated theoretical foundations.
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Table 3: Correlations with R&D Returns

Variable Estimate Std. err. R2 Observations
A. Frictions

Return on Capital 0.043 (0.068) 0.1% 11,844
Tobin’s Q 0.202∗∗∗ (0.030) 6.3% 10,471
Liquidity -0.048∗∗ (0.022) 0.3% 10,568
Dividend rate 36.499∗∗∗ (7.142) 1.5% 11,499

B. Risk
CAPM β 0.001 (0.065) 0.0% 6,799
Valuation risk 0.493∗∗∗ (0.132) 1.4% 10,961

C. Taxation
R&D user cost 1− τ -0.527 (0.617) 0.1% 11,247
Public patent involvement 1.392 (1.240) 0.2% 11,845

D. Inventors
Inventors 0.228∗∗∗ (0.032) 7.2% 11,845
Firm dominance 0.142∗∗∗ (0.045) 1.4% 10,477
Inventor specialization 0.233∗∗∗ (0.083) 0.4% 11,828
Inventor productivity 0.300∗∗∗ (0.054) 3.8% 11,845

E. Dynamics
Long-term R&D growth 0.424∗∗∗ (0.054) 10.2% 6,525
Long-term TFP growth 0.451∗∗∗ (0.050) 3.7% 5,421
Prior excess stock return 0.260∗∗∗ (0.031) 1.1% 10,087
Prior TFP growth 0.316∗∗∗ (0.041) 1.1% 7,277

Note: Each row reports the regression coefficient of a separate regression with dependent variable log
R&D returns, calculated as the ratio of total patent valuations to R&D expenditure. All regressions
control for NAICS3× Year fixed effects and standard errors are clustered at the NAICS6 level. Return on
capital is log of the ratio of sales to last periods capital stock. Tobin’s Q is the ratio of market valuation to
book value in logs. Liquidity and dividend rate are cash and dividends over assets, respectively. R&D user
cost are from Lucking (2019) and mapped from the state-level to the firm either via the patent location or
headquarters. Firm dominance is the average share of inventors employed across firms’ technology classes.

of R&D subsidies. For example, I would not detect any correlation with R&D returns
if R&D subsidies perfectly offset other investment frictions.

Fourth, a growing literature argues that monopsony power is pervasive in the
labor market and quantitatively important for the allocation of workers in the pro-
duction sector (Card et al., 2018; Lamadon et al., 2022). The literature also finds that
high-skilled workers, a group likely including many inventors and research scientists,
are more affected by monopsony power and that larger firm tend to have more thereof
(Prager and Schmitt, 2021; Seegmiller, 2023; Berger et al., 2022; Yeh et al., 2022).
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Monopsony power over inventors or other R&D inputs could drive R&D return dis-
persion due to a markdown term. Firms with more monopsony power restrict their
hiring more aggressively to keep wage low and, as a result, create more value per unit
of cost. In line with this idea, I find that firms hiring more inventors have larger R&D
returns in Panel D.18 In addition, I find that firms dominating their inventor labor
market, as well as those with more productive or specialized inventors tend to have
larger R&D returns as reported in Panel D of Table 3. These findings speak to the
potential mechanisms driving monopsony power such as firm-specific human capital
or limited outside options (Acemoglu, 1997; Schubert et al., 2023).19

Lastly, I investigate the relationship of R&D returns and firm dynamics in Panel
E. For example, R&D return dispersion arises naturally in a context with adjustment
costs to R&D investments. Asker et al. (2014) highlight this intuition in the context
of capital investment and conclude that adjustment costs contribute to dispersion in
the return to capital. In a model with adjustment costs, a positive shock to R&D
productivity will lead to a temporary rise in R&D returns as R&D output, which
captures R&D inputs and productivity, adjusts faster than R&D inputs alone. In
such a world, R&D returns should thus be correlated with R&D growth. In line with
this prediction, I find that long-term growth in R&D, i.e., the growth rate thereof
from t-1 to t+6, is strongly correlated with R&D returns and can account for around
10% of their dispersion.20 Similarly, I find a strong correlation with long-term TFP
growth, which can be rationalized by the same mechanism. Finally, I also find that
prior TFP growth and stock returns are predictive for R&D returns, suggesting, again,
that they are associated with firm expansion and other positive events for the firms.

Overall, the explanatory power of the mechanisms considered here appears low,
echoing similar results in the return on capital literature (David et al., 2016). This
finding makes the interpretation of measured R&D wedges difficult, since we do not
fully know their source. Nonetheless, the documented dispersion marks a stark de-
viation from the predictions of a frictionless model and can be interpreted using the
formulae developed in Section 2.
18Alternatively, one could interpret this finding as a sign of a size-dependent scale elasticity in the

R&D production function. To rationalize the finding, one would need to assume that up-scaling
is costlier for already large companies.

19I provide further evidence on size-dependent monospony power in R&D in Lehr (2023).
20I use long-term growth rate to avoid mechanical correlation.
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4.3 Relationship with Impact-Value Factors
Finally, I investigate the link between R&D wedges and the impact-value factor in
Table D.3 and find mixed results. While markup-based measures suggest slightly
positive correlation, patent-based measures suggest a negative correlation. Thus, the
data does not support strong conclusions on the relationship between R&D wedges
and impact-value factors.

5 Growth, Wedges, and Policy
5.1 Combining Data and Model
I next turn to estimating the macroeconomic impact of R&D wedges on R&D pro-
ductivity, growth, and welfare using the formulas developed in Section 2.
Measurement. Following Proposition 2, I estimate R&D Allocative Efficiency as

Ξ̂t =
1
Nt

∑Nt

i=1 ω̂it · (1̂ + ∆it)
− γ

1−γ
· ˆ̃βt(

1
Nt

∑Nt

i=1 ω̂it · (1̂ + ∆it)
− γ

1−γ
· ˆ̃βt

)γ with ω̂it =
θ̂

1
1−γ

it

1
Nt

∑Nt

i=1 θ̂
1

1−γ

it

.

This approach implicitly assumes that my sample is representative for the US R&D
sector. The estimates are biased towards a less negative impact of R&D wedges if
large and established firms tend to be less impacted by frictions and constraints.

I consider two scenarios for adjustment factor ˆ̃βt. In the first case, I assume that
R&D wedges and impact-value factors are independent and, thus, set ˆ̃βt = 1. In the
second case, I estimate its value based on the coefficient estimated when regressing
R&D returns on a proxy for the impact-value factor using a centered rolling 10-year
window. The adjustment factor is ˆ̃βt =

√
1 + 2 · β̂t, where β̂t is the regression coef-

ficient. In my preferred specification, I measure the impact-value factor as citations
divided by sales growth.

To get a sense of longer-run developments, I collapse annual estimates using
geometric averages. I consider the average over the full sample from 1975 to 2014
as well as the early and late periods, 1975–90 and 2000–14, respectively. Comparing
the early and late period gives us a window into long-run changes in R&D Allocative
Efficiency and their potential impact on economic growth.
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Finally, to get an idea of the variability in the estimates, I calculate standard
errors using a bootstrapping procedure. For each year, I re-sample firm observations
with replacement until I reach the true sample size and calculate the annual aggregates
based on the new sample. I repeat this exercise for 1000 bootstrap samples and report
the standard deviation of the resulting estimates together with non-parametric 95%
confidence intervals.
Counterfactuals. Proposition 2 allows us to estimate the short-run impact of R&D
wedges by comparing the growth rate under the measured impact Ξ̂t to its hypothet-
ical value under Ξt = 1. This counterfactual implicitly assumes that offsetting R&D
wedges is technologically feasible. Even when this is not the case, the measured R&D
Efficiency Ξ̂t is still informative about whether changes in the economic growth rate
arise from R&D wedges or the frictionless growth rate.

I consider two scenarios when estimating the long-run impact on economic growth
and welfare. In the first scenario, I set Lt = L and ϕ = 0, such that a policy setting
Ξt = 1 immediately achieves the frictionless growth rate gC , which I calibrate as
gC = 1.5% ·Ξ−1 to match the long-run US growth rate. I refer to this scenario as the
endogenous growth case as it achieves a constant long-run growth rate.

In the second scenario, which I refer to as the semi-endogenous growth case, I
assume that the frictionless growth rate and population dynamics take the form

gCt = A−ϕ
t · Lγ

t · gC with ϕ > 0 and Lt+1 = (1 + n) · Lt.

The parameter ϕ > 0 determines the degree to which “ideas are getting harder to
find” over time, which is key to achieving constant productivity growth in the long-run
with a growing population (Jones, 1995). The long-run growth rate in this economy
is pinned down by g = (1+ n)γ/ϕ − 1, however, changes in the economic environment
can have temporary effects on the growth rate and induce permanent changes in
the productivity level.21 In the counterfactual, I assume that the economy is on
its long-run growth path before the policy change and trace subsequent changes in
productivity and consumption. I set population growth to n = 1% and calibrate ϕ to
achieve a long-run growth rate of 1.5%.
21To achieve constant growth in the long-run, Aϕ

t ·Lγ
t need to be constant as well, such that we can

solve for g conditional on population growth rate n.
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5.2 The Long-run View
As discussed in Section 2, R&D efficiency crucially depends on the relationship of
R&D wedges and impact-value factors. I first consider the case where both are unre-
lated, e.g., because of a common impact-value factor. The blue line in Figure 2 plots
the annual estimates of Ξt, while long-run values are reported in Panel A of Table 4.
The table also reports the welfare cost in consumption-equivalent terms.22

Table 4: The Impact of R&D Wedges on Economic Growth and Welfare

Time Horizon Growth Impact Ξ− 1 Welfare Cost
Estimate Std. Err. 95% CI Endogenous Semi-End.

A. Baseline
1975–2014 -21.3% (0.41%) [-21.9% -20.5%] 12.3% 11.7%
1975–1990 -14.7% (0.49%) [-15.4% -13.8%] 7.6% 7.4%
2000–2014 -24.0% (0.68%) [-25.0% -22.8%] 14.5% 13.7%
∆ Change -10.9% 5.4% 5.3%

B. Adjusted
1975–2014 -17.9% (0.36%) [-18.4% -17.3%] 9.8% 9.4%
1975–1990 -12.0% (0.40%) [-12.6% -11.2%] 6.0% 5.9%
2000–2014 -21.7% (0.62%) [-22.6% -20.6%] 12.6% 12.0%
∆ Change -11.0% 5.5% 5.3%

Notes: Table reports estimates for impact of R&D wedges across samples together with their
implications for welfare. Changes in welfare are in consumption equivalent terms. Standard
errors and confidence intervals are calculated using a bootstrapping procedure.

Frictions have a significantly negative impact on economic growth as measured
through R&D Allocative Efficiency. I estimate an average growth impact of -21.3% for
the full sample, which suggests a growth rate of 1.9% in absence of R&D wedges based
on a realized annual productivity growth rate of 1.5%. Unsurprisingly, such a stark
slowdown of economic growth has large welfare consequences. The model suggest that
welfare would be 12% higher in absence of R&D wedges. For comparison, Berger et
al. (2022) estimate that monopsony in the production sector reduces US output by
21% and welfare by 8%, while Hsieh and Klenow (2009) estimate 30%–40% larger US
output in absence of production factor misallocation.
22Suppose we start with one consumption path and want to evaluate an alternative. Then, the

consumption-equivalent welfare improvement ∆C is the permanent proportional change in the old
consumption path, such that the household is equally well-off under both new paths.
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Figure 2: R&D Efficiency over Time
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Notes: Figure reports annual estimates for R&D Allocative Efficiency Ξt − 1.
Baseline estimates assumes that R&D wedges are independent from impact-value
factors. Adjusted values estimate the adjustment factor over a 10-year rolling
window. The shaded area covers the 90% confidence interval calculated using a
bootstrapping procedure.

The annual estimates further suggest that declining R&D Efficiency might help
to explain the long-run growth slowdown. Figure 2 reveals that the estimated R&D
Efficiency declines over time with a sharp downturn and partial recover during the
1990s, potentially reflecting dynamics during the Dot-Com boom. Comparing the
estimates for the 1975–90 and 2000–14 period in Table 4, I find that R&D Allocative
Efficiency declined from -15% to -24% with an associated welfare loss of around 5%.
This decline implies an 24%−15%

1−15% ≈ 11% slower short-run growth rate, which accounts
for 11%

35% ≈ 31% of the growth slowdown documented in Aghion et al. (2023).23

Adjusting for the impact-value factor reduces the cost of R&D returns marginally,
but leaves their evolution essentially unaffected. The long-run estimated impact of
R&D wedges is -18%, which is slightly better than the unadjusted estimate. Nonethe-
less, the estimates welfare cost of 9%–10% remain large. Finally, the change in the
economic growth rate implied by the evolution of the R&D Efficiency remains -11%.
23Productivity growth for non-farm private industries declined from 1.81% for the 1948–1995 period

to 1.18% for the 2005–2018 period, a 1.81%−1.18%
1.81% ≈ 35% reduction. See Figure A1 in their paper.
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5.3 Discussion
Before discussing potential drivers of rising frictions and gap to the growth frontier,
I want to discuss a range of potential concerns including measurement. First, not all
inventions are patented and, thus, using patent valuations as a measure of private
value created from R&D is necessarily an incomplete measure, even if it might be
our most reliable one. I consider alternative measures of R&D output in Panel A
of Table 5 as robustness and find that using patent valuations leads to the most
conservative estimate for the impact of R&D wedges. Its decline over time is more
(less) pronounced when using sales (employment) growth instead of patent valuations.

Second, we do not have a convincing measure for the impact-value factor. My
preferred specification estimates adjustment factor β̃ by regressing citations over sales
growth on R&D returns, but I consider two alternatives in Panel B of Table 5. In
the first alternative, I estimate the adjustment factor by regressing citations over
valuations on sales growth over R&D expenditure. The associated estimates make
R&D wedges slightly less costly and suggest that changes over time only led to a
5% reduction in economic growth. In the second alternative, I use the profit-based
measure of the impact-value factor to estimate the adjustment term and find that the
resulting estimates are slightly larger, while changes over time continue to hover still
imply a growth impact around -11%.

Third, I investigate the impact of entry and exit over time and find similar results
for all and continuing firms only.24 The estimates continue to suggest a significantly
negative impact of R&D wedges on growth of -16%, while changes over time among
continuing firms can account for a 9% reduction in economic growth.

Finally, measurement error is an important consideration regardless of the precise
measure of R&D wedges, however, I find little evidence for significant measurement
error in practice. I consider two sources in detail in Appendix G. First, the outcome
of each innovation effort is uncertain and, thus, we might be concerned that some of
the variation in measured R&D wedges is due to firms being more or less lucky in
their research projects. I attempt to estimate the contribution of this channel in a
bootstrapping approach in which I first redraw firms’ patent valuations and citations,
and then calculate how far aggregated values are from the true expectation as mea-
24See Appendix D.3 on how I calculate estimates for continuing firms.
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sured by the firms actual patent valuation and citations. Naturally, these differences
are smaller for firms with more patents by the law of large numbers. My results
suggest that there is a quite limited amount of variation that might be explained by
this source of measurement error. Second, firms might be subject to ex-post firm-level
shocks that have a uniform effect on the value of their R&D output. Such variation
is not accounted for by the bootstrapping approach as it is common across all inven-
tions within a given period and, thus, does not wash out. I propose an estimation
methodology for this source of variation using a GMM estimator in Appendix G. The
main idea is to exploit the persistence of R&D returns to estimate the contribution
of non-persistent variation, such as one-off luck or firm-level measurement error, to
the overall dispersion in R&D returns . My results suggest almost no contribution of
such “measurement error” for my main estimates as reported in Panel D, however, I
do find evidence for significant contribution when using changes in sales to measure
the private value created from R&D.

Table 5: R&D Wedges, Economic Growth and Welfare — Robustness

Specification Growth Impact Ξ− 1 Welfare Cost of ∆
1975–2014 1975–90 2000–14 ∆ End. Semi-End.

A. Value of Innovation
Patent Valuations -17.9% -12.0% -21.7% -11.0% 5.5% 5.3%
∆ Sales -25.3% -19.5% -31.7% -15.1% 7.9% 7.7%
∆ Employment -40.1% -39.1% -43.1% -6.6% 3.1% 3.0%

B. Impact-Value Adjustment
Citations/ ∆ Sales -17.9% -12.0% -21.7% -11.0% 5.5% 5.3%
Citations/ Valuations -15.3% -12.3% -16.8% -5.2% 2.4% 2.3%
Profit-Based -22.8% -15.5% -25.3% -11.6% 5.8% 5.7%

C. Entry & Exit
All Firms -17.9% -12.0% -21.7% -11.0% 5.5% 5.3%
Continuing Firms -16.1% -11.3% -19.1% -8.8% 4.2% 4.2%

D. Measurement Error
Unadjusted -17.9% -12.0% -21.7% -11.0% 5.5% 5.3%
Adjusted -17.8% -11.9% -21.5% -10.9% 5.4% 5.3%

Notes: Table reports estimates for impact of R&D wedges across samples together with their impli-
cations for welfare. Changes in welfare are in consumption equivalent terms. See text and Appendix
for details.
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5.4 Drivers of Rising R&D Wedges
Finally, I want to briefly discuss two potential drivers of the documented empirical
patterns: Rising market power and declining fiscal support of R&D.

First, A growing literature documents rising concentration in the corporate sector,
which might go hand-in-hand with rising market power (Autor et al., 2020; de Ridder,
2023; Aghion et al., 2023). Concentration has also been rising in the R&D sector. In
my sample, the share of patents granted to the top 5% of firms has been rising from
49% in 1975–90 to 67% in 2000–14 with a similar rise in the concentration of inventors
and sales, and slightly lower, but still meaningful, increases in the concentration of
patent valuations and R&D expenditure. A potential consequence of rising concen-
tration is increasing market power in input markets. In fact, there is some concern
that larger firms are increasingly able to exert market power in the labor market, even
for high-skilled labor. (Seegmiller, 2023; Yeh et al., 2022). Such a channel could lead
to rising dispersion in R&D wedges capturing heterogeneity in labor market power
over R&D workers. Rising concentration in the corporate sector, thus, could explain
rising dispersion in R&D returns leading to declining R&D efficiency and, thereby,
slower (short-run) economic growth.

Second, there has been a large decline in federal support for corporate research
(Arora et al., 2020). Data from the NSF National Patterns suggests that the share
of private R&D that is financed by the federal government has declined from 40%
in 1970 to 10% in 2010. The decline might have contributed to rising dispersion in
R&D wedge and, thus, to a decline in R&D efficiency along multiple dimensions.
For example, government R&D funds might have been deployed to alleviate firms’
need for external finance, which might be subject to financial frictions (Howell, 2017).
Similarly, government might have used the funds implicitly to subsidize firms with
market power of R&D inputs and, thereby, offset some of the distortions of market
power. Alternatively, federal funding and R&D employment might have acted as an
outside option for R&D workers, which limited private firms’ labor market power in
the first place. In either case, it is possible that the stark decline in federal funding of
R&D also had led to a reduction in the allocative efficiency in the R&D sector and,
thus, to slower growth, at least in the short-run.
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6 Conclusion
This paper presents evidence that frictions, and their impact on the allocation of R&D
resources, were an important driver of the decline in aggregate R&D productivity
and resulting slowdown of U.S. economic growth in the previous two decades. I reach
this conclusion based on a growth accounting framework capturing frictions flexibly
through a wedge between the private marginal costs and benefits of R&D. The model
growth rate can be decomposed in the frictionless competitive growth rate and an
adjustment factor capturing frictions, R&D Allocative Efficiency.

I measure the the model fundamentals using data on the R&D activity of a sam-
ple of US-listed firms over the 1975–2014 period. In the model, we can measure the
R&D wedges using R&D returns, i.e., the ratio of value created from R&D to its
costs. I measure these as the ratio of patent valuations divided by R&D expendi-
ture and show that there are large and persistence differences therein. In contrast,
the frictionless model without subsidies predicts return equalization and associates
R&D return dispersion with frictions. Measured R&D return dispersion persists in
a large set of robustness exercises and measurement error adjustments. Lastly, I in-
vestigate economic drivers of R&D returns and find evidence suggesting adjustment
frictions, financial frictions, and monopsony power over inventors as potential drivers,
however,most variation in R&D returns remains unexplained.

Next, I estimate the aggregate impact of R&D wedges by combining model formu-
lae with the firm-level data. My estimates suggests that frictions reduce US economic
growth significantly and increasingly so. I estimate for the full sample that eco-
nomic growth was 18% slower due to frictions, implying a welfare cost of 11% in
consumption-equivalent terms. Furthermore, I find that rising frictions can account
for an 11% lower growth rate for 2000–14 compared to 1975–90, which accounts for
30% of the observed productivity slowdown. Jointly, the evidence suggests that pri-
vate frictions matter for economic growth and increasingly so.

These findings suggest important avenues for future research. Most importantly,
more research is needed to understand the underlying forces driving rising frictions.
A thorough understanding of the variation in R&D wedges and impact-value factors
may allow for the development of potentially targeted policies and could thus be
essential for improving U.S. R&D productivity and economics growth.
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Appendix
A Proofs
Proof of Proposition 1. The proof of the proposition is entirely algebraic. Firstly,
defining θit = φit · Vit we can solve for firms’ demand for R&D inputs as

ℓit =

(
θit · γ

(1 + ∆it) ·Wt

) 1
1−γ

.

Plugging into the R&D resource constraint, we can solve for the R&D input price:

Wt

γ
= L

−(1−γ)
t ·

(∫ 1

0

(θit/(1 + ∆it))
1

1−γ · di
)1−γ

.

Next, using the firm’s first order condition, we can express the economic growth
rate as

gt =

∫ 1

0

ζit · ℓit ·
Wt

γ
· di.

Plugging in the definition of the wage and firms’ R&D labor demand, we have

gt = Lγ
t ·
∫ 1

0
ζit · θ

1
1−γ

it · (1 + ∆it)
− γ

1−γ · di(∫ 1

0
θ

1
1−γ

it · (1 + ∆it)
− 1

1−γ · di
)γ .

Some rearrangement yields the formulae in the proposition.

Proof of Corollary 1. The formula follows immediately since the terms in the nom-
inator and denominator are expected values with normalized R&D productivity ωit

acting as a probability weight. Furthermore, and by Jensen’s inequality, Ξt ≤ 1

with equality in absence of dispersion in R&D wedges. The final statement follows
immediately from the second order approximation provided in Lemma 1.

Proof of Proposition 3. The planner problem is given by

max gt =

∫ 1

0

ζit · zit · Vit · di

s.t. Lt =

∫ 1

0

ℓit · di and zit = φit · ℓγit
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The first order conditions give rise to R&D input demand

ℓit =

(
ζit · θit · γ

λWt

) 1
1−γ

, (A.1)

where λWt is the shadow wage.
One can confirm immediately, that the implied allocation coincides with the com-

petitive equilibrium iff ζit ·(1+∆it) is a constant. All proportional level differences are
absorbed into the shadow wage and, thus, do not affect the allocation across firms.

Thus, the planner can implement the growth maximizing allocation by setting
1 + ∆it = 1/ζit.

Lemma 1. The second-order approximation of Ξt around ζit = ζ and ∆it = ∆ is
given by

Ξt ≈ exp
(
−1

2
· γ

1− γ

(
σ2
∆ + 2 · σ∆,ζ

))
, (A.2)

where σ2
∆ is the weighted variance of log R&D wedges and σ∆,ζ is the ωit-weighted

covariance of log R&D and Impact-Value factors. The approximation is precise if
all variables are jointly log-normal and, in this case, weights are unnecessary for
calculating the variance and covariance.

Proof. The result follows immediately from the 2nd order approximation of Ξt around
a no-dispersion point.

Proof of Proposition 2. The proof for proposition follows by noting that the second-
order approximation of Ξt in Lemma 1 can be expressed as

Ξt ≈ exp
(
−1

2

γ

1− γ
σ2
δ · β̃

)
with β̃ = 1 + 2 · σδ,ζ

σ2
δ

.

In turn, it is straight-forward to show that a second order approximation of the
formula in Proposition 2 yields the same expression.
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B Data and Measurement Appendix
B.1 Measurement
Mapping patents to firms. I assign patents to firms based on the crosswalk
between patents and PERMNOs in Kogan et al. (2017), which I extend to GVKEYs using
the mapping provided by WRDS.
Measuring inventor employment. Let Pit→t+4 be the set of successful patent
applications for firm i between t and t+4 and Iit→t+4 be the set of associated inventors.
I denote the number of patents assigned to firm i and listing j as inventor at time t
as Pijt and the total number of patents listing j as inventor as Pjt. My measure of
inventors is then given by

Inventorsit→t+4 =
∑

j∈Iit→t+4

∑4
s=0 Pijt+s∑4
s=0 Pjt+s

. (B.1)

I use two additional measure in robustness checks. Firstly, I use the raw size of
|Iit→t+4|, which forgoes the full-time equivalent adjustment, and, secondly, I construct
the measure first at the 1-year horizon and then aggregate over the 5-year window.
Note that the former is identical to the main measure when all inventors are only
listed on patents that are also assigned to the firm.
Return on Capital. Following David et al. (2016), I measure the return on capital
as the ratio of sales to beginning of period capital stock. As for the R&D return, I
construct the measure at the 5-year level:

Return on Capitalit ≡
∑4

s=0 Salesit+s∑4
s=0 Capitalit+s

. (B.2)

Tobin’s Q. I define the (physical) investment Q as the ratio of firm valuation to
physical capital (ppeqgt). I calculate firm valuation as stock price times outstanding
shares plus debt net of cash holdings (prcc_f × csho + dltt + dlc − act).
Liquidity. I define liquidity as cash holdings divided by assets ch/at.
Dividend rate. I define the dividend rate as dividends over assets dvt/at.

Public patent involvement. I identify patents as connected to public actors
either (a) if they are assigned to a government entity, research lab, or university or
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(b) if they have a government interest statement. I calculate the public value share
as the ratio of patent valuations connected to public actors to total patent valuations
for the relevant 5-year window.

Firm dominance. I construct firm dominance over inventors in two steps. First,
for each of a firm’s new patent within a 5-year window, I calculate the share of
inventors working for the firm among those that worked on patents in the exactly
same technology classification. For the latter, I use the complete CPC classification
of the patent, which has more than 600 technology classes, which are non-exclusive
at the patent level. Patents of the same technology class are thus those that have
exactly the same classifications as the patent in consideration. As before, I distinguish
between inventors using the USPTO disambiguation and link inventors to a firm if
they are listed on a firm’s new patent for the 5-year window in consideration. Second,
I aggregate the patent-based measure to the firm-level by taking a simple average
over the firm’s new patents. Note that the resulting measure is between 0 and 1 by
construction with 1 implying maximal dominance and vice versa.

Inventor specialization. I construct inventor specialization in two steps. First,
I calculate inventor specialization for a given 5-year window as the average cosine
similarity between patent classifications in an inventors portfolio of new patents. I
rely on CPC classifications of patents, which has more than 600 non-exclusive patent
categories. For each patent I then create an indicator vector over the set of available
patent classification, where I weight individual categories by their inverse frequency. I
then calculate the average cosine similarity across all patents in the portfolio and take
the simple average across all patents. This measure is between 0 and 1 by construction
with 0 implying completely different patents and 1 implying that all patents have the
same technology classification. Second, I aggregate this measure up to the firm-level
by taking a patent-weighted average across inventor associated with a firm, where the
weight reflect the number of new patents shared by the inventor and firm. I interpret
a larger value in this measure as more specialized inventors and vice verse following
the logic that specialized inventors work on similar patents.
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C Empirical Appendix

Table C.1: R&D Return Dispersion Across Specifications

Specification Standard
Deviation Observations

A. Aggregation horizon
1-year 1.00 11,083
5-year 0.93 11,845
10-year 0.92 11,845
20-year 0.91 11,845

B. Realization horizon
Same year 0.86 10,885
1-year 0.93 11,845
2-year 0.97 10,852
5-year 1.08 8,377

C. Minimum Patents
50 patents 0.93 11,845
100 patents 0.84 7,846
200 patents 0.79 4,859

Note: All return measures residualized with respect to NAICS3×Year fixed
effects. Aggregation horizon refers to the number of years over which valuations
and R&D expenditure are summed. Realization horizon refers to the difference
between the year in which patents are filed and the year of R&D expenditure
considered. Unless otherwise specified, R&D returns are measured with a
5-year aggregation horizon, 1-year realization horizon, and 50 minimum patents.
Specifications in bold are the baseline. Returns are measured in logs.

Table C.2: R&D Return Dispersion Across Industries

Industry Standard
Deviation Observations

All industries 0.93 11,844
Life Science 0.82 1,630
IT 1.07 4,732
Manufacturing 0.83 5,108
Other 0.83 374

Note: R&D returns residualized with respect to NAICS3×Year fixed effects. Returns
are measured in logs. Industries are defined as in Mezzanotti and Simcoe (2023).

42



Online Appendix
D Additional Empirical Results
D.1 Measurement Robustness

Table D.1: Return Dispersion with Adjustments

Adjustment Standard
Deviation Observations

A. Acquisitions
Unadjusted 0.923 11,829
Adjusted (s = 6.3%) 0.910 11,829
Adjusted (s = 8.5%) 0.909 11,829
Adjusted (s = 100%) 0.982 11,829

B. Fixed-costs
Unadjusted 0.924 11,807
Adjusted 0.937 11,807

C. Knowledge capital
R&D Expenditure 0.925 11,845
Knowledge capital 0.961 11,845
Organizational capital 0.985 11,845

Note: See text for description of measures. All return measures residualized with respect
to NAICS3×Year fixed effects. Second column reports standard deviation of log R&D
returns.

Acquisitions. Acquisitions are common in the innovation economy (Phillips and
Zhdanov, 2013; Fons-Rosen et al., 2023). They might lead to measurement error in
R&D returns due to misattribution, i.e., by not counting all R&D costs associated
with the measured patents. Suppose that the firm acquires some inventions that are
subsequently patented and added to total value created zit · Vit, however, the costs
are recorded as acquisition cost Aqc.it instead of R&D expenditure R&Dit. Assuming
that the firm is otherwise unconstrained, the measured R&D return then becomes

Vit · zit
R&Dit

=
1

γ
·
(
1 +

Aqc.it
R&Dit

)
,
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which may yield measured R&D return dispersion, to the degree that acquisition
intensities differ across firms, even though true R&D returns are equalized.

I propose the following approach to investigating the importance of acquisitions
for R&D return dispersion. First, I assume that firms use a fixed fraction s of
total reported acquisition expenditure on innovative products such that Aqc.it =

s · Total aqc.it. Note that total acquisition expenditure is reported in Compustat.
Second, assuming that the acquisition intensity is relatively small, we can estimate s
as the semi-elasticity of R&D returns with respect to the total acquisition intensity
using OLS. I find s ∈ {6.3%, 8.6%} depending on the precise fixed effects. Finally,
we can construct adjust R&D returns, which should be equalized across firms, as

Vit · zit
R&Dit + ŝ · Total aqc.it

=
1

γ
.

Panel A of Table D.1 reports the associated results. Adjusting for acquisitions
marginally reduces R&D return dispersion, however, the magnitudes are small. Ad-
justing by 8.5% of total acquisitions reduces measured R&D return dispersion by
1.5%. Counting all acquisitions as R&D expenditure increases R&D return dispersion.
Thus, acquisition, as captured by this adjustment, do no appear to be a significant
driver of R&D return dispersion.

Fixed costs of R&D. Suppose that firms face fixed R&D costs fi ·Wt. Then,
total R&D expenditure is given by (fi + ℓit) ·Wt and the R&D return in absence of
frictions by

Vit · zit
(fi + ℓit) ·Wt

=
1

γ
· ℓit
fi + ℓit

. (D.1)

Resultingly, as long as firms face some fixed-costs, their average R&D return will be
increasing in their quantity of R&D conducted ℓit and we have R&D return dispersion
that is unrelated to frictions. Note, however, that the average R&D return for very
large firms, i.e. ℓit >> fi, is still approximately constant.

I propose a simple approach to investigate the importance of fixed costs. First, I
assume that fixed costs are identical within a NAICS3×5-Year cell. Second, let ∆̄ be
the average R&D return for a in the top 75th percentile and ∆ be the average R&D
return for a firm in the 25th percentile. I can then estimate the industry specific γ̂ as
inverse of the average R&D return for firm in or above the 75th percentile of R&D
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expenditure. Finally, let TC be the average total R&D expenditure of a firm in 25th
percentile of the R&D cost distribution. I can then estimate fixed costs and adjusted
R&D returns as

f̂i ·Wt = TC i ·
(
1− ∆i

∆̄i

)
and Vit · zit

TCit − f̂i ·Wt

=
1

γ
.

The measure will estimate larger fixed costs if firms with high R&D expenditure also
tend to have much larger R&D returns and vice versa. The corrected R&D returns
should be equalized across firms.

Panel B of Table D.1 reports the associated results. The fixed-costs adjustment
increases measured R&D return dispersion marginally. Thus, fixed-costs, as captured
in this adjustment, do appear to be a significant source of measured R&D return
dispersion.

Knowledge capital. A growing literature in economics and finance interprets
R&D expenditure as a cumulative investment in the firms knowledge base (Peters and
Taylor, 2017; Tambe et al., 2019; Crouzet and Eberly, 2023). Under this alternative
view, R&D capital is the appropriate denominator for the R&D returns instead of
R&D expenditure. I explore the robustness of my findings with respect to the input
measure using the knowledge capital and organizational capital measures developed in
Ewens et al. (2022). The knowledge capital measure is built up from R&D investments
only, while organizational capital focuses on other overhead expenses. I refer to the
sum of both as organizational capital.

Panel C of Table D.1 reports the associated results. R&D return dispersion is
strictly higher when using either the knowledge capital or organizational capital. R&D
return dispersion is thus robust to alternative measure of R&D inputs as captured in
these adjustments.

Outlier patents. Innovation outcomes are famously fat-tailed (Akcigit and Kerr,
2018). While most inventions have a moderate impact at best, some, like the iPhone,
transform entire industries. This consideration raises the question as to how much
of the variation in R&D returns is driven by “outlier-patents” with extremely large
valuations. I investigate this question by creating winsorized measures of patent
valuations that ignore value above the top 1% or top 5% of the annual patent valuation
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distribution and recalculate R&D return dispersion. As reported in Panel A of Table
D.2, winsorizing patent valuations at the top 1% (5%) reduces R&D return dispersion
by 1% (3.6%). Thus, only a small fraction of the dispersion in R&D returns is
potentially attributable to outlier patents.

Low value patents. Jaffe and Lerner (2007), among others, argue that changes
in patent law, grant procedures, and enforcement have led to an onslaught of low
quality patents with questionable economic value. While the methodology in Kogan
et al. (2017) does take into account low quality patents, we might still wonder whether
their presence adds more noise to measured R&D returns.25 I investigate this question
by constructing measures excluding valuations below 250k (500k) in 2010 USD and
recalculating R&D return dispersion.26 As reported in Panel B of Table D.2, excluding
low quality patents from the measure increases measured dispersion in R&D returns
slightly.

Measurement details of patent valuations. Kogan et al. (2017) measure
patent valuations using the idea that a patent grant should increase the value of the
firm by the unexpected part of the patent value. Let M be the valuation of the
firm, V be the value of the patent, and π the ex-ante probability of the patent being
granted, then the change in firm valuation ∆M at the moment that the patent is
granted should equal

∆M = (1− π) · V or, equivalently, V =
∆M

1− π
. (D.2)

They measure the nominator using stock market returns and assume that the
probability that a patent is granted is constant across all patents. The latter as-
sumption is quite stringent for at least two reasons. First, patents of different patent
classes might have different probabilities of being granted. For example, during the
1991-2014 period, 85% of patents applications classified as semiconductor memory de-
vices (CPC subclass G11C) were granted within 3.5 years compared to 30% of those
25The measure developed in Kogan et al. (2017) yields strictly positive and monotonically increasing

patent valuation as a function of the the stock market return. Thus, even if the stock market does
not respond at all, because the patent is worthless, they will assign a positive value to the patent.

26In line with the hypothesis that the share of low quality patents has increased, I find that 10%
(15%) of patents are valued less than 250k (500k) from 1975-84, while 17% (22%) are for the
2005-14 period.
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Table D.2: Return Dispersion with Patent Valuation Adjust-
ments

Adjustment Std. dev. of
R&D return Observations

A. Outlier patents
Unadjusted valuations 0.925 11,845
Winsorized at top 1% 0.916 11,845
Winsorized at top 5% 0.892 11,845

B. Low value patents
All valuations 0.925 11,845
Valuations > 250k 0.942 11,845
Valuations > 500k 0.959 11,842

C. Class grant rate
Unadjusted 0.925 11,845
Adjusted 0.933 11,845

D. Value-dependent grant rate
η = 0 (Unadjusted) 0.925 11,845
η = .05 0.968 11,845
η = .25 1.163 11,845
η = .5 1.740 11,845
η = 1.5 2.584 11,845
η = 2 1.648 11,845

Note: See text for description of measures. All return measures residualized with
respect to NAICS3× Year fixed effects. Second column reports standard deviation of
log R&D returns.

classified as healthcare informatics (CPC subclass G16H). Second, patent grants are
assumed to be independent of the value of the patent. Such an assumption would
not hold, e.g., if higher quality patents are more valuable, but also more likely to be
granted.

I investigate whether either of these possibilities contributes to R&D return dis-
persion as follows. First, I use data on patent application and grant decision from
the USPTO for the 1991–2014 period to calculate the grant probability by patent
class and construct an adjusted valuation that takes into account differences in grant
probabilities. For a given CPC subclass, I calculate the grant probability as the share
of patents that were granted within 3.5 years of the application. Second, I assume
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that the probability of patent rejection takes the form 1 − πp = π0 · V −η
p , where η

measures the degree to which higher value patents are also more likely to be granted.
The adjusted patent valuation is then given by

Ṽp =

(
V · 1− π̄

π0

) 1
1−η

. (D.3)

I calibrate π0 at the annual level to keep the average patent valuation constant and
experiment with alternative values for η. Optimally, one would want to estimate this
value, however, we only observe valuations for granted patents. Finally, note that for
η > 1, the ranking of patent valuations is reversed such that patents that are more
valuable according to Kogan et al. (2017) are less valuable according to the adjusted
measure.

I find that neither adjustment reduces the measured dispersion as reported in
Panel C and D of Table D.2. Panel C considers the case of adjustment for class
grant probabilities and shows that R&D return dispersion is marginally larger when
taking them into account. Panel D considers value-dependent grant rates and find
that, depending on the assumed value-grant rate elasticity, measured R&D return
dispersion is much larger when taking them into account. For example, it increases
by 25% when assuming that a 10% larger patent valuation translated into a 2.5%
higher probability of being granted.

D.2 Relationship with Impact-Value Factors
Finally, I investigate the link between R&D wedges and the impact-value factor in
Table D.3 and find mixed results. On the on hand, markup-based measure suggest
slightly positive correlation. For example, I find a significant positive correlation of the
R&D return with the profit-implied markup, i.e., revenue divided by revenue minus
cost, implying that firms with higher R&D returns also tend to have larger markups.
The same relationship, although smaller in absolute magnitude, holds when using
the markup measure developed in Loecker et al. (2020). To the degree that markup
differences are primarily driven by persistent differences in the quality of innovation,
as in a model with limit pricing and heterogeneous innovation quality, these results
suggest that the impact-value factor might amplify the misallocation due to R&D
return dispersion.
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On the other hand, patent-based measures suggest a negative correlation. For
example, when measuring the impact-value factor as citations over valuations, I find
a strong negative correlation. However, this might be mechanical as valuations are
used in both measures. The negative correlation is less pronounced when using sales
growth instead of patent valuations. I also find a robust negative correlation when
using citations over valuations to measure the impact value factor and sales growth
over R&D expenditure to measure the R&D wedge. Finally, using the text-based
patent quality measure developed in Kelly et al. (2021) as a proxy for the growth
impact, I find a strong negative correlation with the R&D return. Thus, if these
patent-based measures provide a good proxy for the impact-value factor, then they
might partly offset misallocation due to R&D wedges.

In summary, the data does not support strong conclusions on the relationship
between R&D wedges and impact-value factors due to conflicting findings.

Table D.3: The Relationship of R&D Wedges and Impact-Value Factors

Impact-Value Factor Estimate Standard Error R2 Observations
A. Markup-based Measures

Estimated Markup 0.030∗∗∗ (0.007) 2.7% 10,615
Profit-implied Markup 0.066∗∗∗ (0.016) 4.6% 11,845

B. Patent-based Measures
Citations/Valuations -0.490∗∗∗ (0.034) 16.4% 11,845
Citations/∆ Sales -0.077 (0.054) 0.3% 11,688
Citations/Valuations∗ -0.201∗∗∗ (0.032) 3.8% 11,688
Text-Impact/∆ Sales -0.184∗∗∗ (0.053) 1.9% 7,481

Note: Each coefficient stems from a separate regression with the R&D wedge as the independent variable and
a measure of the impact-value factors as the dependent variable. The R&D wedge is measured as the ratio of
patent valuations over R&D expenditure excepts for the third row, where it is measured as changes in sales over
R&D expenditure. Profit-implied markups are measured as one over one minus the profit rate, which is the ratio
of profits to sales. Measured markups refer to the µ2 markup measure from Loecker et al. (2020). Variables are
aggregated to the 5-year level as described in the text and the regression specification is in logs. Standard errors
are in round brackets and the observation number in rectuangular brackets. All regressions control for NAICS3×
Year fixed effects and standard errors are clustered at the NAICS6 level.

D.3 Constructing Aggregate Estimates for Continuing Firms
A natural question in light of the evolution of R&D efficiency is whether entry and
exit contributed significantly. To shed light on this question, I construct a measure of
R&D efficiency that is concerned with continuing firms only. I construct the baseline
measure for 1975 and measures of annual changes in the Impact of R&D wedges for
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all subsequent years, which I accumulate over time. For the year 1976, I first filter
out all firms which are active in 1975 and 1976. For these firms, I calculate estimates
of R&D efficiency for both 1975 and 1976. I then take the ratio to get the rate of
change and apply it to my original estimate for 1975. Subsequent years are calculated
accordingly.

In formulas, let Ξ̂t be the baseline estimate for the Impact of R&D wedges for
year t. Let Ξ̂t,t−1

t be the estimate when using only firms that were active in both t and
t− 1 with Ξ̂t,t−1

t−1 being the respective value for t− 1. I then calculate the time-series
for the Impact of R&D wedges for continuing firms Ξ̂C

t as

Ξ̂C
t =

Ξ̂t if t = 1975

Ξ̂C
t−1 ·

(
Ξ̂t,t−1
t

Ξ̂t,t−1
t−1

)
if t = 1976, ..., 2014

. (D.4)

Differences in the evolution of this estimate versus the baseline estimate occur due
to changes in the gap of the R&D wedge when calculated for all versus for continuing
firms.

D.4 Robustness for Aggregate Measures
Table D.4 reports estimates of R&D efficiency for alternative specifications.

E Theory Online Appendix
E.1 Extensions
Specialization of R&D inputs. There is a long tradition in labor economics
arguing that workers might not be perfectly substitutable across firms or that firms
are not perfect substitutes from the perspective of workers (Card et al., 2018). Such
forces can be incorporated in the model by augmenting the R&D resource constraint
to

Lt =

(∫ 1

0

ℓ1+ξ
it · di

) 1
1+ξ

, (E.1)

where ξ > 0 captures increasing marginal costs of R&D inputs to a given firm.
Resultingly, firms’ wages are potentially heterogeneous and take the form Wit =

Wt · ℓξit, where Wt is a common factor clearing the labor market. Firms’ first-order
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Table D.4: R&D Wedges, Economic Growth and Welfare — Specification Robustness

Specification Growth Impact Ξ− 1 Welfare Cost of ∆
1975–2014 1975–90 2000–14 ∆ End. Semi-End.

A. Fixed Effects
Year -21.3% -15.4% -25.2% -11.7% 5.8% 5.7%
NAICS3 × Year -17.9% -12.0% -21.7% -11.0% 5.5% 5.3%
NAICS6 × Year -13.5% -8.1% -17.6% -10.3% 5.1% 5.0%

B. Minimum Patents
50 Patent -17.9% -12.0% -21.7% -11.0% 5.5% 5.3%
100 Patents -17.3% -10.7% -21.7% -12.3% 6.2% 6.0%
200 Patents -16.5% -9.4% -21.5% -13.4% 6.8% 6.7%

C. Time Horizon
5-Year -17.9% -12.0% -21.7% -11.0% 5.5% 5.3%
10–Year -18.1% -16.3% -19.8% -4.2% 1.9% 1.9%
20–Year -17.2% -17.9% -18.6% -0.9% 0.4% 0.4%

Notes: Table reports estimates of R&D efficiency across samples together with their implications
for welfare. Changes in welfare are in consumption equivalent terms. See text and Appendix for
details.

conditions are given by

∂zit
∂ℓit

∣∣∣
ℓit=ℓ∗it

· Vit = (1 + ∆it) ·Wt · ℓξit. (E.2)

Proposition 4 highlights that the main results carry over to this alternative setup,
however, the effective scale elasticity is lower. Resultingly, frictions tend to be less
costly for larger ξ as reallocation of resources becomes less beneficial in a world with
specialized inputs.

Proposition 4. Under equations (2), (E.1), (E.2), and (5), we can express the
economic growth rate in a Competitive Growth Equilibrium as the product of three
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terms:

gt =
Lγ
t

Aϕ
t

·
(∫ 1

0

(θit · ζit)
1

1−γ̃ di

)1−γ̃

︸ ︷︷ ︸
= Frontier Growth Rate gFt

·
(∫ 1

0

ωit · ζ̃
1

1−γ̃

it di

)γ̃−1

︸ ︷︷ ︸
≡ Policy Opportunity Λt

·
∫ 1

0
ωit · ζ̃it · (1 + ∆it)

− γ̃
1−γ̃ di(∫ 1

0
ωit · (1 + ∆it)

− 1
1−γ̃ di

)γ̃
︸ ︷︷ ︸

≡ R&D Efficiency Ξt

,

(E.3)

where ζ̃it = ζit/
(∫ 1

0
ωit · ζitdi

)
and ωit = θ

1
1−γ̃

it /

(∫ 1

0
θ

1
1−γ̃

it di

)
are the normalized

impact-value factor and an R&D productivity weight, respectively, and γ̃ ≡ γ
1+ξ

is
the adjusted scale elasticity.

Proof. R&D input demand is given by

ℓit =

(
θit · γ

(1 + ∆it) ·Wt

) 1
1−γ+ξ

.

We can then solve for the growth rate using the R&D input demand and supply
constraint:

gt =
Lγ
t

Aϕ
·
∫ 1

0
ζit · θ

1+ξ
1−γ+ξ

it · (1 + ∆it)
− γ

1−γ+ξ · di(∫ 1

0
θ

1+ξ
1−γ+ξ

it · (1 + ∆it)
− 1+ξ

1−γ+ξ · di
) γ

1+ξ

.

Defining γ̃ = γ
1+ξ

and some rearrangement yields the formulae in the proposition.

Multiple R&D lines. Consider an alternative version of the model with multiple
R&D lines per firm. I will index a firm by i ∈ I and a R&D line by j ∈ Ji. The
production function is given by

zij = φij · ℓγij. (E.4)

Firms’ first order conditions for R&D inputs at the R&D line level are

γℓ1−γ
ij · θij = (1 + ∆ij)W. (E.5)
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We can solve for the R&D wage as

W

γ
= L−(1−γ)

∫
I

(∑
j∈J⟩

(θij/(1 + ∆ij))
1

1−γ

)
di

1−γ

. (E.6)

The economic growth rate is then

g =

∫ 1

0

(∑
j∈Ji

ζij · zij · Vij

)
· di = Lγ

Aϕ
t

·

∫ 1

0

(∑
j∈Ji

ζij · θ
1

1−γ

ij · (1 + ∆ij)
− γ

1−γ

)
· di(∫ 1

0

(∑
j∈Ji

θ
1

1−γ

ij · (1 + ∆ij)
− 1

1−γ

)
· di
)γ .

(E.7)

Next, consider the inputs at the firm level, measured as

1 + ∆i =

∑
j∈Ji

θij · ℓγij
W ·

∑
j∈Ji

ℓij
=
∑
j∈Ji

ℓij
ℓi

· (1 + ∆ij)

ζi =

∑
j∈Ji

zij · V P
ij∑

j∈Ji
zij · Vij

=
∑
j∈Ji

θij · ℓγij∑
j∈Ji

θij · ℓγij
· ζij

θi = (1 + ∆i) · W̃ γ · (W̃ · ℓi)1−γ

(E.8)

Some algebra confirms the familiar growth rate formula

g =
Lγ

Aϕ
·
∫ 1

0
ζi · θ

1
1−γ

i · (1 + ∆i)
− γ

1−γ · di(∫ 1

0
θ

1
1−γ

i · (1 + ∆i)
− 1

1−γ · di
)γ . (E.9)

Thus, the growth rate abstracting from the product-line level heterogeneity re-
covers the growth rate under full heterogeneity under the proposed measurement
approach.

Abundant resources. Suppose aggregate supply of Lt responds to productivity
adjusted wage Wt such that

Lt = L̄t ·
(
Wt

Yt

) ξ
1−γ

, (E.10)
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where L̄t is given exogenously and ξ/(1−γ) is the aggregate supply elasticity. Also, let
L∗
t be the supply in absence of frictions, i.e., when the R&D wage is at its frictionless

level.

Proposition 5. Under equations (2)-(5) and (E.10), we can express the economic
growth rate in a Competitive Growth Equilibrium using the sample decomposition as
in Proposition 1 with two adjustments. First, the frontier growth rate gFt reflects the
frictionless R&D input supply,

gFt =
L∗
t
γ

Aϕ
t

·
(∫ 1

0

(θit · ζit)
1

1−γ di

)1−γ

, (E.11)

and, second, R&D efficiency also reflects the potential effect on labor supply

Ξt =

∫ 1

0
ωit · ζ̃it · (1 + ∆it)

− γ
1−γ di(∫ 1

0
ωit · (1 + ∆it)

− 1
1−γ di

)γ ·
(∫ 1

0

ωit · (1 + ∆it)
− 1

1−γ · di
) ξ·γ

1+ξ

. (E.12)

Note that the supply elasticity only appears in the second term, which depends on the
productivity-weighted average level of frictions. Any change in frictions or policy that
keeps constant this average thus has the same effect on growth as in the case of ξ = 0.

Proof. The proof follows from the same steps as in the derivation of the baseline
results.

Note, however, that the adjusted formulas tend to be less sensitive to variation in
R&D returns. Intuitively, with flexible labor supply, excess demand for R&D workers
tends to lead to more aggregate R&D employment instead of crowding-out demand
from other firms.

Proposition 6. Suppose that R&D returns, impact-value factors, and R&D produc-
tivity are jointly log-normally distributed and that R&D returns and impact-value
factors are either positively or uncorrelated. Then, R&D efficiency is declining in
the dispersion of log-R&D wedges as long as the supply of R&D inputs is sufficiently
inflexible: 1

γ
> ξ

1−γ
. Furthermore, holding constant the average level of R&D wedges,

the Impact of R&D wedges is declining in the dispersion of R&D wedges as long as
γ ≥ ξ

1+2ξ
.
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Proof. Solving for Ξt under log-normal distribution and setting µ∆ = 0, we have

lnΞt = −1

2
· γ

(1− γ)2
·
(
γ − 1

1 + ξ

)
· σ2

∆.

It is straight-forward to show that this term is decreasing in σ2
∆ iff 1

γ
> ξ

1−γ
. Alter-

natively, setting µ∆ = −1
2
σ2
∆ to maintain the average level of 1 + ∆it, we have

lnΞt = −1

2
·
(

γ

1− γ
− ξ

1 + ξ

)
· σ2

∆,

which is declining in σ2
∆ as long as the condition in the proposition holds.

Importantly, aggregate estimates suggest that ξ
1−γ

is around 0.5 and, thus, easily
satisfies the more stringent constraint given the consensus value for γ = 0.5 (Chetty
et al., 2012).

Free Entry. Suppose that the massMt of innovative firms is potentially responsive
to changes in the economic environment and let M∗

t be the mass of firms in absence
of frictions. The equilibrium wage satisfies

Wt

γ
=

(
Mt

Lt

)1−γ (∫ 1

0

θ
1

1−γ

it · (1 + ∆it)
− 1

1−γ di

)1−γ

. (E.13)

I assume that all firm-types are permanent and that frictions ∆it show up directly
in the firm’s cost function. The current period profits of an innovative firm are given
by

πit ≡ max {θit · ℓγit −Wt · ℓit · (1 + ∆it)}

= (1− γ) · θ
1

1−γ

it · ((Wt/γ) · (1 + ∆it))
− γ

1−γ .

Assuming a constant discount factor and permanent types implies that current and
expected, discounted value are proportional by factor R/(R − 1), where R is the

55



discount rate. The expected value of being an R&D firm is then given by

Vt = Et

[
R

R− 1
· πit

]

=
R

R− 1
· (1− γ) ·

∫ 1

0
θ

1
1−γ

it · (1 + ∆it)
− γ

1−γ · di
(Wt/γ)

γ
1−γ

=
R · (1− γ)

R− 1
·
(
Lt

Mt

)γ

·
(∫ 1

0

θ
1

1−γ

it · di
)1−γ

·
∫ 1

0
ωit · (1 + ∆it)

− γ
1−γ · di(∫ 1

0
ωit · (1 + ∆it)

− 1
1−γ · di

)γ
I then assume that entry is such that entrants draw the attributed of a random

firm among the existing distribution, implying expected value Vt and in turn need to
pay entry cost. I consider two alternatives. In the first case, entry costs are in units
of the output and given by ϕE

t · R·(1−γ)
R−1

·M
γ
φ

t . The free entry condition is

Vt = ϕE
t · R · (1− γ)

R− 1
·M

γ
φ

t

Using the formula for value of entry, we can then solve for equilibrium entry:

Mt

M∗
t

=

 ∫ 1

0
ωit(1 + ∆it)

− γ
1−γ di(∫ 1

0
ωit(1 + ∆it)

− 1
1−γ di

)γ
 1

γ
φ

1+φ

s.t. M∗
t =

(
Lt

ϕE
t

1
γ

(∫ 1

0

θ
1

1−γ

it di

) 1−γ
γ

) φ
1+φ

.

(E.14)
Note that φ → 0 recovers the baseline model with Mt = 1, while φ → 0 yields a
standard free entry condition. In general, larger values of φ make the mass of firms
more responsive to the economic environment.

In the second case, I assume that entry cost are linked to the R&D wage and
given by ϕE

t · (1− γ) ·M
1
φ

t · Wt

γ
. The free entry condition is

Vt = ϕE
t · R · (1− γ)

R− 1
·M

1
φ

t · Wt

γ
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Using the formula for value of entry, we can then solve for equilibrium entry:

Mt

M∗
t

=

 ∫ 1

0
ωit(1 + ∆it)

− γ
1−γ di(∫ 1

0
ωit(1 + ∆it)

− 1
1−γ di

)γ ·
(∫ 1

0

ωit(1 + ∆it)
− 1

1−γ di

)γ−1


φ
1+φ

s.t. M∗
t =

(
Lt

ϕE
t

) φ
1+φ

.

(E.15)

Proposition 7. Under equations (2)-(5) and (E.14) or (E.15), we can express the
economic growth rate in a Competitive Growth Equilibrium using the sample decom-
position as in Proposition 1 with two adjustments. First, the frontier growth rate gFt
reflects frictionless entry,

gFt =
Lγ
t

Aϕ
t

·M∗
t
1−γ ·

(∫ 1

0

(θit · ζit)
1

1−γ di

)1−γ

, (E.16)

and, second, R&D efficiency also reflects potential effects on entry

Ξt =

∫ 1

0
ωit · ζ̃it · (1 + ∆it)

− γ
1−γ di(∫ 1

0
ωit · (1 + ∆it)

− 1
1−γ di

)γ · Mt

M∗
t

, (E.17)

where Mt/M
∗
t is given by the respective formulas.

Proof. The proof follows the same steps as before apart from taking the number of
firms as a variable and using the entry condition.

Private frictions now have an additional detrimental effect on growth through
the number of firms. Notably, the entry-effect does not depend on the impact-value
factor, which is irrelevant to firms’ decision to enter or exit the economy. It is straight-
forward to show that the impact of frictions is always worse in the economy with free
entry holding constant the average level of R&D returns.

F Mechanisms Driving R&D Wedges
In this section I briefly highlight some potential drivers in R&D returns and impact-
value factors. For this purpose, I will rely on a two-period growth model.
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F.1 Baseline Model
Setup. The final good producer creates consumption good Yt by combining inputs
yjt from a unit mass of product lines according to:

lnYt =
∫ 1

0

ln yjt · dj.

Each input is supplied by a single monopolist with constant marginal ψ/Ajt. The
monopolist is free to chose any price pjt, however, there is a competitive fringe of
firm with constant unit costs λjt · (ψ/Ajt) that limit the monopolists’ price setting
power. Consequently, the monopolist sets limit price equal to the marginal costs of
the competitive fringe and earns profits

πjt = Yt · (1− λ−1
jt ).

There is a unit mass of innovative firms at time 0, which may hire inventors ℓi at
wage W to produce an invention at time 1 with probability zi:

zi = φi · ℓγi .

An invention improves technology in a random product line by λi such that Aj1 =

λi · Aj0 in a product line with a successful invention. The competitive fringe then
absorbs the knowledge of the previous monopolist, such that its unit cost gap to the
monopolist is λi as well. Resultingly, the innovation yields profits πi in period 1,
which firms discount at rate R. The value of innovation to the firm is thus given by
Vi = πi/R and its optimization problem

max
ℓi

{Vi · zi −W · ℓi}

There is a fixed number of research workers, whose labor market clearing condition
determines the R&D wage in equilibrium:

L =

∫ 1

0

ℓi · di.
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Finally, I define the productivity index At such that lnAt =
∫ 1

0
lnAjt · dj. Conse-

quently, its growth rate is given by

g = ln(A1/A0) ≈
∫ 1

0

(λi − 1) · zi · di,

where the approximation relies on lnλi ≈ λi − 1.
The planner maximizes economic growth subject to the same technological con-

straints as firms:

g∗ = max
∫ 1

0

zi · (λi − 1) · di s.t. L =

∫ 1

0

ℓi · di.

R&D returns and impact-value factors. It is straight-forward to show that in
this setup R&D returns are equalized across firms:

Vi · zi
W · ℓi

=
1

γ
and ℓi =

(
Vi · φi

(W/γ)

) 1
1−γ

.

Furthermore, one can show that this allocation is also the solution to

g = max
∫ 1

0

zi · Vi · di s.t. L =

∫ 1

0

ℓi · di.

Defining ζi ≡ (λi − 1)/Vi, we can thus rearrange the planner problem as

g∗ = max
∫ 1

0

zi · Vi · ζi · di s.t. L =

∫ 1

0

ℓi · di. (F.1)

From the formulation of Vi it then follows immediately that planner and private
allocation coincide iff ζi is a constant across firms.

F.2 Mechanisms for R&D Return Dispersion
R&D Subsidies or Taxes. Suppose firms face R&D subsidies τi on their gross
R&D expenditure. The firm problem is then given by

max
ℓi

{Vi · zi − (1− τi) ·W · ℓi} .
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Consequently, firms’ R&D returns directly reflect differences in subsidy rates:

Vi · zi
W · ℓi

=
1

γ
· (1− τi) and ℓi =

(
Vi · φi

(W/γ) · (1− τi)

) 1
1−γ

.

Capacity constraints. Suppose firms face exogenous capacity constraint ℓi ≤ ℓ̄i.
The firm problem is then given by

max
ℓi

{
Vi · zi −W · ℓi s.t. ℓi ≤ ℓ̄i

}
.

Consequently, firms’ R&D returns directly reflect the tightness of the capacity con-
straint λ̃i:

Vi · zi
W · ℓi

=
1

γ
· (1 + λ̃i) and ℓi =

(
Vi · φi

(W/γ) · (1 + λ̃i)

) 1
1−γ

.

Heterogeneous Discount Rates. Suppose firms have heterogeneous discount rates
Ri reflecting e.g. risk or financial constraints, which are not observed in the data.
Let Vi = πi/R with R = E[Ri], then the firm problem is given by

max
ℓi

{(R/Ri) · Vi · zi −W · ℓi} .

Consequently, firms’ measured R&D returns directly reflect differences in discount
factor:

Vi · zi
W · ℓi

=
1

γ
· Ri

R
and ℓi =

(
Vi · (R/Ri) · φi

(W/γ)

) 1
1−γ

.

Adjustment costs. Suppose firms face exogenous adjustment costs ϕ ·W ·(ℓi− ℓ̄i)2.
The firm problem is then given by

max
ℓi

{
Vi · zi −W · ℓi − ϕ ·W · (ℓi − ℓ̄i)

2
}
.

Consequently, firms’ R&D returns directly reflect the adjustment costs:

Vi · zi
W · ℓi

=
1

γ
·(1+2·ϕ·(ℓi−ℓ̄i)) and Vi · zi

W · ℓi + ϕ ·W · (ℓi − ℓ̄i)2
=

1

γ
·1 + 2 · ϕ · (ℓi − ℓ̄i)

1 + ϕ (ℓi−ℓ̄i)2

ℓi
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Firms with high R&D employment vis-à-vis their reference point have higher R&D
returns and vice versa.

Monopsony Power. Suppose R&D labor is partly specialized across fields. R&D
labor is perfectly mobile across firms within a field, but not across fields, such that
the labor market clearing condition is given by

L =

∫ 1

0

ℓi ·

(
1
Ni

∑
i∈Ni

ℓj

L

)ξ

· di, (F.2)

where Ni is the number of firms in a given field.
Resultingly, wages may differ across fields and are generally increasing in the

average demand for R&D input within a given field:

Wi = W ·

(
1
Ni

∑
j∈Ni

ℓj

L

)ξ

(F.3)

Firm internalize the impact labor demand on wages and, consequently, their first
order conditions conditions under symmetry (ℓj = ℓi for j ∈ Ni) are given by

γ · θ · ℓγ−1
i =

(
1 +

1

Ni

· ξ
)
·Wi (F.4)

R&D return is given by (1/γ) ·
(
1 + 1

Ni
· ξ
)
with ∆i =

1
Ni

· ξ. Variation in R&D
returns is thus directly linked to the degree of competition in the firm-specific labor
market. Firms with more competition for R&D workers have lower R&D returns and
vice versa.

F.3 Mechanisms for Dispersion in Impact-Value Factors
Patent Protection. Suppose that the competitive fringe learns with probability
1 − Pi about the new technology of a monopolist such that the monopolist is only
able to profit from the innovation with probability Pi. In this case, the private value
of the invention is Vi = Pi · πi/R, while the public value remains λi − 1. Resultingly,
variation in Pi induces variation in ζi. Note, also, the that private return is still
equalized in this scenario.
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Exogenous Markup Differences. Suppose that firms differ in their unit cost
parameter ψi due to e.g. technological differences or complementarities across product
lines. The profit of an invention is then given by πi = Y1·(1−(ψ/ψi)·λ−1). Resultingly,
variation in ψi across firms yields variation in the private value a firm creates from
innovation without changing the growth impact λi − 1, which induces variation in
impact-value factor ζi.

Endogenous Markup Differences. Suppose that firms differ in their step-size λi,
then ζi ∝ λi such that variation in step-sizes yields variation in impact-value factor.
Intuitively, the growth gains of λi are linear, while the profit gains are concave, such
that firms with high quality innovation under-invest in R&D.

Frictions in the Product Market. It is straight-forward to see that any frictions
in the product market that affect πi without changing the growth-impact of an in-
vention will naturally yield variation in ζi as well. Firms with artificially low profits
will under-provide innovation.

Knowledge externalities. More general knowledge externalities can also variation
in the impact-value factor. For example, let the growth rate be

g =

(∫ 1

0

φi · zi · (ζi · Vi) · di
)ϕ

·
∫ 1

0

zi · (ζi · Vi) · di, (F.5)

where the first term on the right-hand size captures simultaneous knowledge exter-
nalities. Here, the marginal benefit to R&D as perceived by the firm for high φi firms
will be generally too low compared to the social planner perspective if ϕ > 0 and vice
versa.

G Measurement Error
This section considers adjustments for two sources of measurement error in R&D
returns: Uncertainty across R&D projects within a firm and firm-level uncertainty in
R&D outcomes. The former arises when firms conduct R&D projects whose ex-post
value to the firm is uncertain, e.g., because some inventions turn out more valuable
than others. The latter arises when there are firm-level shocks that affect the value
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of R&D outputs after investments are made, e.g., general taste shocks for the firm’s
products. I propose a bootstrapping procedure to address the former and a structural
GMM approach to address the latter.

G.1 Bootstrapping for Noise
Suppose the value of individual research projects, as represented by patents, is ex-
ante uncertain. Ex-post variation in valuations then might give rise to dispersion in
measured R&D returns even with equalized ex-ante expectations. I propose a simple
bootstrapping procedure to estimate the variability in R&D returns induced by this
variation.

I establish the realized portfolio of patent valuations for each firm× 5-year interval
in which the firm has at least 50 patents. Throughout, I take the true number of
patents that a firm has achieved as given. For each of 1000 bootstrap samples I then
implement the following procedure:

1. For each firm and 5-year window in which the firm has at least 50 patents:

(a) From the realized portfolio for the firm-period, draw with replacement an
alternative portfolio with the same number of patents.

(b) Calculate the return gap as the ratio as the log of valuations in the alter-
native portfolio divided by the valuation of the true portfolio.

2. Calculate the within-period standard deviation of return gaps for the simulated
data.

One way to interpret this approach is that the realized patent portfolio is a good
approximation for the true uncertainty faced by the firm around its innovation out-
comes. The procedure ignores all variation coming from shifts in the level of expected
patent valuation and instead considers the dispersion conditional on the average value
only. As a result, the procedure will overstate the associated measurement error if
firms are aware that certain project are low or high expected value within their re-
search portfolio. On the other hand, the procedure ignores all uncertainty around the
number of realized patents.

Table G.1 reports the estimates. I find an average standard deviation of the return
gap of around 0.06, which suggests that uncertainty around patent valuation might
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have contributed (0.06/1.1)2 ≈ 0.2% of the variance of R&D returns. Uncertainty
across patent, thus, did not appear to have a large contribution of dispersion therein.
Note that this is not necessarily surprising, since averages should converge to the true
mean with a sufficiently large number of independent observations by the law of large
numbers.

Table G.1: Bootstrapping Estimates for Measurement Error

Measure Period
1975-2014 1975-1990 2000-2014

Standard deviation 0.059 0.056 0.058
[0.051,0.069] [0.049,0.066] [0.051,0.069]

Adjustment factor 0.998 0.997 0.998
[0.997,0.998] [0.996,0.998] [0.997,0.999]

Notes: Table reports bootstrapping estimates for noise in R&D returns.
See text for details.

G.2 GMM Approach
The bootstrapping approach can address variation across projects, however, it can-
not adjust for correlated shocks to the firms’ patent valuations or citations, which
could arise, e.g., due to the expectation-realization gap, correlated errors in patent
valuation estimation, or misreporting of R&D expenditure.27 I propose to investigate
the importance of such variation using a structural decomposition of the variation in
R&D returns.

Consider a stationary, AR(1) process {yit}:

yit = (1− ρ)µi + ρyit−1 + εit with εit
iid∼ N(0, σ2

ε) and µi ∼ N(0, σ2
µ). (G.1)

The econometrician observes the process with i.i.d. normal measurement error:

ỹit ≡ yit + νit νit
iid∼ N(0, σ2

ν). (G.2)
27Note that R&D expenditure is expensed in US GAAP accounting, giving firms an incentive to

fully report R&D expenditure to reduce their tax liability. Terry et al. (2022) argue that managers
still might misreport when attempting to hit short-run earnings targets or smooth earnings. See
also Dukes et al. (1980); Baber et al. (1991); Lev et al. (2005); Chen et al. (2021); Terry (2023).
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Lemma 2. Define ∆ỹit ≡ ỹit − ỹit−1, then under ρ ∈ (0, 1), we have

m1 ≡ Cov(ỹi,t,∆ỹit) =
1

1 + ρ
σ2
ε + σ2

ν

m2 ≡ Cov(ỹi,t,∆ỹit−1) =
ρ

1 + ρ
σ2
ε

m3 ≡ Cov(ỹi,t,∆ỹit−2) =
ρ2

1 + ρ
σ2
ε

m4 ≡ Cov(ỹi,t, ỹit−1) = σ2
µ +

ρ

1− ρ2
σ2
ε .

Proposition 8. If ρ ∈ (0, 1), we can solve for {ρ, σµ, σε, σν} using the population
auto-covariance structure of ỹit and ∆ỹit ≡ yit − yit−1:

β ≡


ρ

σ2
ε

σ2
µ

σ2
ν

 =


m3

m2
(m2)2

m3
+m2

m4 − (m2)2

m2−m3

m1 − (m2)2

m3


Let Ω be the covariance matrix of m and denote the sample moments by m̂, then

β̂ ∼ N(β,Σ) and a feasible estimator is Σ̂ =

(
∂β̂

∂m

)′

Ω̂

(
∂β̂

∂m

)
,

where ∂β/∂m is evaluated at m̂ and given by

∂β

∂m
=


0 0 0 1

− m3

(m2)2
2m2

m3
+ 1 m2

(
m2−2m3

(m2−m3)2

)
−2m2

m3

1
m2

−
(

m2

m3

)2
−
(

m2

m2−m3

)2
−
(

m2

m3

)2
0 0 1 0

 .

Proof. The first part follows by rearranging the moments expressions. The second
part follows from the Law of Large Numbers for the moment vector and the Delta
method.

I report estimates for two measures of R&D returns in Table G.2. I find no con-
tribution of purely transitory shocks to the overall variation for my baseline measure
of R&D returns in column 1, however, the estimates are somewhat imprecise. Using
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sales to measure R&D output yields a contribution of 22%.

Table G.2: GMM Parameter Estimates for AR(1)
with Noise

Parameter Valuations/ ∆Sales/
R&D R&D

ρ 0.626∗∗∗ 0.787∗∗∗

(0.083) (0.149)
σ2
ϵ 0.628∗∗∗ 0.404∗∗∗

(0.085) (0.092)
σ2
µ 0.197 −0.086

(0.140) (0.726)
σ2
ν 0.007 0.509∗∗∗

(0.090) (0.091)
Observations 8,014 7,653

Adjustment factor 0.997 0.810

Notes: Table reports parameters estimates for AR(1) with
Noise in logs using a General Methods of Moments ap-
proach. See text for details.
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