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Abstract

This paper provides evidence that rising misallocation in the R&D sector con-
tributed to the recent slowdown in U.S. productivity growth. I develop a growth
accounting framework allowing for misallocation of R&D resources across firms cap-
tured by wedges between their marginal cost and benefits of R&D. I show that R&D
wedges can be measured from R&D returns and document large and persistent differ-
ences in R&D returns across US-listed firms. Combining data and model, I estimate
that frictions reduced productivity growth by 18% over 1975–2014 and that rising
misallocation in the R&D sector accounts for 25% of the growth slowdown.
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U.S. productivity growth has slowed down significantly in the last two decades. While total
factor productivity (TFP) grew 0.5% per year in 1975–1995, its growth rate declined to
0.3% in 2005–2018. Surprisingly, investment in research & development (R&D)—commonly
considered the driver of medium- and long-run productivity growth—has remained stable
over the same time horizon. R&D expenditure amounted to 2.7% of GDP for 1975–95,
compared to 2.9% for 2005–18.

Figure 1: Declining Growth Despite Stable R&D Expenditure
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Notes: Growth rate of Total Factor Productivity at Constant National Prices calculated using data
from Penn World Table 10. R&D Expenditure as a share of Gross Domestic Product calculated using
data from Bureau of Economic Analysis.

I provide evidence for an explanation of declining TFP growth at constant R&D invest-
ment rooted in a simple decomposition. In endogenous growth models, productivity growth
is the product of two terms: aggregate R&D investment and aggregate R&D productivity—
the rate at which these investments are translated into growth. Slower growth despite stable
R&D investment can then only be rationalized by declining aggregate R&D productivity.

In turn, aggregate R&D productivity is a function of two forces: the average R&D
productivity of firms and the efficiency with which R&D resources are allocated across them,
or R&D Allocative Efficiency. A growing literature highlights the first channel and finds that
“ideas are getting harder to find” (Bloom et al., 2020). Instead, this paper focuses on the
second channel and provides evidence that declining allocative efficiency contributed to lower
aggregate R&D productivity and, thus, economic growth. While some firms invest too much
in R&D relative to the inventions they produce, others do too little, and increasingly so.
Quantitatively, this channel can account for 25% of the slowdown. Thus, not only are ideas
getting harder to find, but we are also increasingly looking for them in the wrong places.
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I reach these conclusions based on a growth accounting framework nesting workhorse
growth models (Romer, 1990; Aghion and Howitt, 1992). Firms hire R&D workers to maxi-
mize the private value created from innovation. I introduce frictions flexibly through exoge-
nous R&D wedges in their first-order conditions. These distort firms’ demand for R&D inputs
such that marginal returns on R&D are controlled by R&D wedges rather than equalized
across firms. Growth occurs as a by-product of innovation, however, the private value cre-
ated from an invention may not align perfectly with its contribution to productivity growth.
I capture this divergence with an impact-value factor such that firms with low impact-value
factor create a lot of private value, while contributing little to productivity growth.

I show that the impact of private frictions, i.e., R&D wedges, on the equilibrium economic
growth rate is captured by a sufficient statistic, which I refer to as R&D Allocative Efficiency.
When private and growth incentives are aligned, the baseline case in the literature, variation
in R&D wedges reduces allocative efficiency—an R&D sector equivalent of Hsieh and Klenow
(2009). Intuitively, differences in marginal R&D returns due to R&D wedges imply that
growth could be accelerated by redistributing R&D resources from low to high marginal
R&D return firms. Heterogeneity in impact-value factors can amplify, dampen, or even
overturn this result. If firms with low impact-value factors also have low R&D wedges, then
misallocation is worsened as R&D wedges push firms that already invest too much in R&D
from a growth-maximizing perspective to do even more. In contrast, the growth-maximizing
R&D policy uses R&D wedges to offset differences in impact-value factors.

I consider several extensions. First, my results extend to a framework with multi-research
lines per firms, however, the counterfactual holds constant their distribution. Second, fric-
tions are costlier under free entry as they deter entry by reducing potential gains for entrants.
Third, frictions are less costly when R&D inputs are imperfect substitutes across firms as
there are fewer gains from input reallocation. Finally, the level of frictions has a direct effect
on growth in the case of a positive aggregate R&D supply elasticity, while it does not in the
case of fixed supply, in which only relative frictions matter.

Next, I estimate the model primitives from firms’ patents and financial statements for
a sample of US-listed firms for 1975–2014. I measure firms’ R&D investment from their
expenditure and the resulting private value created using patent valuations. In the model,
the ratio of value created and investment, which I refer to as R&D return, provides a direct
measure of R&D wedges. I experiment with a range of proxies for impact-value factors based
on profitability measures or citations. These data allow me to estimate R&D Allocative
Efficiency, i.e., the impact of frictions on growth, in my sample.
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Before estimating the aggregate impact of R&D wedges, I investigate them at the micro-
level. In absence of frictions, firms equalize the marginal benefit to the marginal cost of
R&D and, thereby, the R&D return as well. In contrast, I find large and highly persis-
tent differences in measured R&D returns and, by extension, R&D wedges. This finding is
reminiscent of the literature on misallocation in the production sector, which argues that
dispersion in the return on capital is a strong indicator for capital misallocation (David et
al., 2016). I find that the standard deviation of R&D returns is 42% larger than its coun-
terpart for the return on capital, suggesting significant R&D misallocation. Notably, R&D
return dispersion is primarily among highly comparable firms. 78% of the variation remains
when focusing on differences among firms within 6-digit industry×year cells only. Finally,
the strong persistence of R&D returns—with an implied annual autocorrelation coefficient
around 0.9—suggest structural factors rather than statistical noise.

I perform numerous robustness exercises and find large measured R&D return dispersion
throughout. First, I consider sales or employment growth as alternative measures of the pri-
vate value of R&D output and find larger dispersion in the resulting R&D returns. Second,
I estimate the prevalence of measurement error in complementary bootstrap and structural
approaches, and find no evidence that it contributes significantly to R&D return dispersion.
Lastly, I investigate additional mechanisms directly, including heterogeneous scale elastic-
ities, acquisitions, fixed costs, knowledge capital, and alternative assumptions around the
patent valuations, and find no evidence that they significantly contribute to R&D return
dispersion. The combined evidence thus suggests that dispersion in measured R&D wedges
is not driven by measurement details, which leaves economic drivers as a candidate source.

R&D wedges measure frictions in the model, however, I find that they are surprisingly
hard to predict with empirical proxies thereof. For example, they are uncorrelated with the
return on capital, which suggests that these investments are subject to different frictions.
Similarly, R&D returns are not consistently correlated with measures of financial frictions.
The strongest predictors for R&D returns are R&D employment and measures of firm expan-
sion such as rising R&D investment or TFP growth. The former is in line with size-dependent
frictions in R&D including frameworks in which monopsony power over inventors increases
with their employment. The latter suggests a potential role for adjustment frictions that
lead to temporarily larger R&D returns during expansions due to a gradual adjustment pro-
cess of R&D investment and vice versa. Lastly, I find an ambiguous relationship between
R&D wedges and impact-value factors with different signed correlations across alternative
measures of the latter.
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At the aggregate level, I estimate that productivity growth is significantly slower due to
low R&D Allocative Efficiency and increasingly so. For the full sample, I estimate an 18%
lower growth rate due to dispersion in R&D wedges. For comparison, Hsieh and Klenow
(2009) estimate that U.S. productivity would improve by 40% under the first-best factor
allocation, while Berger et al. (2022) estimate a 21% larger output in absence of monopsony
in the production sector. Naturally, achieving the frictionless growth rate might not be
feasible in practice if R&D wedges are the product of technological or information frictions
that cannot, or should not, be adjusted for.

Comparing 1975–90 to 2000–14, I find that declining R&D Allocative Efficiency can ac-
count for 11% slower growth, which represents 25% of the 0.5%−0.3%

0.5% ≈ 40% overall slowdown.
Robustness exercises including alternative measurements of the R&D wedge, R&D produc-
tivity, and the impact-value factor, measurement focusing on within-firm changes only, and
adjustments for measurement error yield comparable estimates ranging from 5%–15% slower
growth. I also find that the allocation of R&D resources is worse among smaller firms. Lastly,
I show that at industry-level R&D allocative efficiency predicts R&D expenditure and R&D
returns in line with the prediction of the theory, which provides direct evidence of its ability
to predict aggregate trends. Thus, my estimates suggest that slower productivity growth,
and lower R&D productivity, is partly due to rising misallocation in the R&D sector.

Literature. This paper contributes to three strands of the literature. First, I contribute
to the growing literature on the recent slowdown in economic growth by highlighting the
importance of private frictions. Similar to Akcigit and Ates (2021) and Olmstead-Rumsey
(2022), I argue for declining aggregate R&D productivity as a core driver; however, I attribute
it to rising misallocation instead of declining micro-level R&D productivity or knowledge
spillovers.1 This perspective is similar to de Ridder (2023), Aghion et al. (2023) and Ayerst
(2022), who propose models in which rising misalignment between the private incentives
for R&D and its growth impact leads to R&D misallocation and, thereby, a slowdown in
economic growth. Instead, I focus on the contribution of private frictions, captured by R&D
wedges, and follow a sufficient statistic approach allowing for a direct mapping between data
and model, rather than relying on structural estimation.

Second, I provide a new framework to study the drivers of aggregate R&D productivity.
The early endogenous growth literature identifies innovation as the main driver of economic
1Bloom et al. (2020) also argue that aggregate R&D productivity has declined; however, their focus is a long-
run, steady decline in R&D productivity as “ideas are getting harder to find,” in line with the predictions
of semi-endogenous growth theory (Jones, 1995).
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growth and highlights the under- or over-provision of innovation due to externalities (Romer,
1990; Aghion and Howitt, 1992). Recent contributions study the distribution of R&D re-
sources across firms, which might be inefficient with heterogeneity in spillovers or firms’
ability to benefit from inventions (de Ridder, 2023; Mezzanotti, 2021; Akcigit et al., 2022;
Manera, 2022; Aghion et al., 2022, 2023). My framework is closely connected to this liter-
ature but differs in several key dimensions. Most importantly, I allow for private frictions
and estimate that they have a significant impact on economic growth. Furthermore, I show
that these frictions interact with incentive misalignment between private value and growth
and, thus, estimating the growth impact of either factor requires a joint treatment.

Third, I contribute to the literature on factor misallocation by providing evidence on
its pervasiveness in the R&D sector. Restuccia and Rogerson (2008) and Hsieh and Klenow
(2009) first identified factor misallocation across firms—as captured by factor return heterogeneity—
as a significant force shaping aggregate productivity. The subsequent literature documented
that dispersion in the return on capital is surprisingly difficult to attribute to individual
mechanisms, which I also find for R&D returns, and that the persistence of frictions is sur-
prising in and of itself (Banerjee and Moll, 2010; Asker et al., 2014; Midrigan and Xu, 2014;
David et al., 2016). I complement the literature by focusing on R&D investments instead of
static production factors such that factor return heterogeneity is linked to the productivity
growth rate instead of its level. Furthermore, I show that the sources of frictions appear to
be different for capital and R&D investment as their returns are uncorrelated. I also find
limited evidence on the contribution of channels discussed prominently in the literature such
as government subsidies or frictions. In contrast, König et al. (2022) find that product mar-
ket frictions led to an inefficient R&D allocation in China. Similarly, financial frictions are
often considered to be severe for intangible investments such as R&D (Brown et al., 2009).
My focus on larger firms in the U.S. is a likely explanation for the contrasting findings. The
strongest predictor of R&D returns is inventor employment, which could be explained by
increasing monopsony power exerted by large employers (Berger et al., 2022). Such a channel
could also explain rising frictions in light of rising overall concentration (Autor et al., 2020).

1 Theory
This section introduces the theoretical framework for assessing the impact of friction in the
R&D sector on economic growth. The framework nests alternative growth theory traditions
(Romer, 1990; Aghion and Howitt, 1992; Jones, 1995).
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1.1 Model Setup
Time is infinite, discrete, and indexed by t.
Production. Output Yt is a function of aggregate productivity At and production labor
LP,t, which is supplied inelastically:

Yt = At · LP,t, (1)

Firms. A unit mass of innovative firms i ∈ [0, 1] with R&D productivity φit hires R&D
input ℓit at price Wt to achieve mass zit of innovations:2

zit = φit · ℓγit with 0 < γ < 1. (2)

Firms assign value Vit to innovations, which I take as given. In workhorse growth models,
this value is linked to resulting profits and innovation opportunities.3 Firms are subject to
R&D wedge ∆it such that their equilibrium R&D input choice ℓ∗it satisfies

∂zit
∂ℓit

∣∣∣
ℓit=ℓ∗it

· Vit = (1 + ∆it) ·Wt. (3)

The left-hand side is the marginal benefit of research input, while the right-hand side is the
marginal cost adjusted for the R&D wedge. If ∆it = 0, we recover the frictionless benchmark
in which firms equalize marginal benefit and cost. Otherwise, firms’ choices are distorted
relative to the benchmark with larger wedges resulting in lower demand for R&D inputs.

In theory, there are a range of distortions captured by R&D wedges including financial
frictions, adjustment costs or capacity constraints, market power in the R&D input market,
and R&D subsidies. For example, high R&D wedges arise when firms face constraints on
their choice of R&D inputs due to financial frictions or adjustment costs. Similarly, low R&D
wedges can capture R&D subsidies, which reduce firms’ marginal cost below the market price.
I discuss mechanisms further in Appendix F and take R&D wedges as given.
Factor markets. Aggregate R&D input Lt is supplied inelastically, capturing the idea that
research talent is scarce (Goolsbee, 2003; Wilson, 2009):

Lt =

∫ 1

0

ℓit · di. (4)

2zit can also be interpreted as the arrival rate of inventions in a continuous time setup.
3I provide examples of Vit for alternative microfoundations in Appendix F.
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An alternative interpretation is that R&D policy already optimizes the size of the R&D
sector, such that the allocation of resources within it remains the relevant margin of concern.4

Growth. Productivity grows through innovation and its growth rate is the aggregate of the
mass of inventions times their growth impact. The latter is linked to an inventions’ private
value via the impact-value factor ζit. Firms with a large impact-value factor contribute more
productivity growth per dollar of private value created. The growth rate is given by

gt ≡
At+1 − At

At

= A−ϕ
t ·

∫ 1

0

ζit · zit · Vit · di, (5)

where ϕ ≥ 0 is “phishing-out” effect that is necessary to achieve balanced growth in a
semi-endogenous growth framework (Jones, 1995).

The impact-value factor plays a prominent role in the growth literature as it determines
the degree to which firms’ incentives are aligned with a growth-maximizing planner. The
early endogenous growth literature emphasizes that firms might not be able to appropriate
the full value generated from their innovation to society such that social value exceeds private
value (Romer, 1990). On the other hand, the Neo-Schumpeterian literature argues that the
business stealing effect acts as a counterbalancing force as innovators do not internalize
the economic damage imposed on firms made obsolete by innovation (Aghion and Howitt,
1992). In recent contributions, heterogeneity in impact-value factors arises due to differences
in firms’ ability to earn larger profits from inventions, protect their intellectual property,
and withstand challengers (Akcigit and Ates, 2021; Mezzanotti, 2021; König et al., 2022;
Manera, 2022; Olmstead-Rumsey, 2022; Aghion et al., 2023; de Ridder, 2023). I discuss
these mechanisms in Online Appendix F and take the factors as given here.
Equilibrium. I use two simplified equilibrium definitions in deriving the main results. The
Competitive Equilibrium respects the equation detailed above, while the Planner Equilibrium
allocates R&D inputs to maximize growth.

Definition 1. For given {Y0, {Lt, {Vit, φit,∆it, ζit}i∈[0,1]}t=0,...,∞}, a Competitive Equilibrium
is a sequence {{ℓit}i∈[0,1],Wt, gt, Yt}t=0,...,∞ satisfying (1)-(5).

Definition 2. For a given {Y0, {Lt, {Vit, φit, ζit}i∈[0,1]}t=0,...,∞}, a Planner Equilibrium is a
sequence {{ℓit}i∈[0,1], gt, Yt}t=0,...,∞ maximizing economic growth {gt}t=0,...,∞ period-by-period
and satisfying equations (1), (2), (4), and (5).
4This assumption abstracts from any waste of R&D inputs linked to R&D wedges, e.g., due to “real”
adjustment cost. Any adjustment costs captured here are assumed to take the form of either production
labor or cash payments.
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Note that this model setup encompasses a wide range of models in the literature albeit
using slightly different labels. For example, in the baseline expanding variety model à la
Romer (1990), the growth-rate is the sum of new idea, i.e., zit, divided by the stock of new
ideas. We can recover this by setting ζit = 1/(Vit ·At). Heterogeneous idea quality can easily
be accounted for as well. Similarly, in the baseline Schumpeterian growth models à la Aghion
et al. (2014), the growth-rate is the aggregate over the innovation rate of firms, i.e., zit, times
the productivity improvement λit − 1. We can recover this model with ζit = (λit − 1)/Vit.
Naturally, using flexible Vit and ζit allows one to capture a wider range of model extensions.
Importantly, however, this model does not fully capture the dynamics of models à la Klette
and Kortum (2004) as it takes R&D productivity φit as given rather than specifying an
endogenous process for its evolution. I discuss this further in the extensions below.

1.2 Results
Proposition 1 establishes that the equilibrium economic growth rate can be decomposed into
three terms. The first two terms jointly characterize the growth rate in a frictionless, compet-
itive equilibrium without R&D wedges. The third term, which I refer to as R&D Allocative
Efficiency, captures the impact of R&D wedges. R&D Allocative Efficiency depends on the
distribution of R&D wedges, but not their average level. Intuitively, excess or insufficient
aggregate demand for R&D resources is balanced by the R&D input price due to the fixed
aggregate supply thereof and, thus, does not have a direct impact on economic growth.

Proposition 1. Under equations (2)-(5), we can express the economic growth rate in a
Competitive Growth Equilibrium as the product of three terms:

gt =
Lγ
t

Aϕ
t

·
(∫ 1

0

(θit · ζit)
1

1−γ di

)1−γ

︸ ︷︷ ︸
= Frontier Growth Rate gFt

(∫ 1

0

ωit · ζ̃
1

1−γ

it di

)γ−1

︸ ︷︷ ︸
≡ Policy Opportunity Λt

∫ 1

0
ωit · ζ̃it · (1 + ∆it)

− γ
1−γ di(∫ 1

0
ωit · (1 + ∆it)

− 1
1−γ di

)γ
︸ ︷︷ ︸

≡ R&D Allocative Efficiency Ξt

,

where ζ̃it ≡ ζit/
(∫ 1

0
ωit · ζitdi

)
and ωit ≡ θ

1
1−γ

it /
( ∫ 1

0
θ

1
1−γ

it di
)

are the normalized impact-
value factor and an R&D productivity weight, respectively, with R&D productivity defined as
θit ≡ φit · Vit.

The economics captured by R&D Allocative Efficiency are best understood when con-
sidering the case of constant, or independently distributed, impact-value factors such that
constrained firms do not systematically create more or less growth impact per private value.
Then, dispersion in R&D wedges strictly reduces economic growth as shown in Corollary 1.
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Intuitively, R&D wedges control the marginal return on R&D. If there are firms with dif-
ferent marginal returns, one could raise the aggregate return by moving resources from low
to high marginal R&D return firms. Larger dispersion then suggests ever more unrealized
opportunities for gainful reallocation and, thus, more misallocation—a growth equivalent to
Hsieh and Klenow (2009).

Corollary 1. Suppose ζit ⊥ (1 + ∆it)
− γ

1−γ , then R&D Allocative Efficiency is characterized
by the joint distribution of R&D wedges and productivity:

Ξt =

∫ 1

0
ωit · (1 + ∆it)

− γ
1−γ di(∫ 1

0
ωit · (1 + ∆it)

− 1
1−γ di

)γ .
Up to a 2nd-order approximation, it is strictly decreasing in the dispersion of R&D wedges
and achieves a maximum of 1 if they are equalized.

The analysis is more nuanced once we relax the assumption of orthogonal impact-value
factors as established in Proposition 2. Under some conditions on their correlation with R&D
wedges, we can understand them as either amplifying or dampening their impact. Under
positive correlation, i.e., if particularly constrained firms also achieve a high growth impact
per private value created, then impact-value factors amplify the misallocation created from
R&D wedges. Conversely, they dampen their effect in the case of (weak) negative correlation,
i.e., if constrained firms have lower growth impact per private value created.

Proposition 2. Let the ωit–weighted covariance of log R&D wedges and impact-value factors,
σ∆,ζ be greater than minus half the ωit–weighted variance of log R&D wedges, σ2

∆ and define
η =

√
1 + 2 · σ∆,ζ/σ2

∆. Then, up to a 2nd-order approximation,

Ξt =

∫ 1

0
ωit · (1 + ∆it)

− γ
1−γ

·ηdi(∫ 1

0
ωit · (1 + ∆it)

− 1
1−γ

·ηdi.
)−γ .

A couple of examples highlight the underlying economics. Suppose young firms are
financially constrained and less skilled in capturing rents from their inventions, e.g., because
of fewer legal resources to defend their patents, such that they have large R&D wedges
and impact-value factors. Then, R&D wedges are more costly for growth since such firms
would have invested insufficiently in R&D even without wedges, but are now pushed even
further away from the optimum. Alternatively, suppose large firms have market power over
inventors but are also better at capturing rents from inventions, such that firms with large
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R&D wedges (from monopsony power) tend to have lower impact-value factors. Then, market
power pushes the allocation of R&D workers away from low impact-value factor firms and,
thus, is less costly in terms of growth.

R&D wedges are closely linked to optimal growth policy as shown in Proposition 3. To
achieve maximal growth, the planner uses R&D subsidies to perfectly offset any variation in
the product of impact-value factors and R&D wedges. This allocation achieves the frontier
growth rate by setting Λt · Ξt = 1, which suggests that any Λt · Ξt < 1 yields a growth rate
within the growth possibility frontier. Intuitively, firms maximize value, while the planner
wants to maximize growth. As long as both are not perfectly aligned, the allocation of R&D
inputs is inefficient from the perspective of growth maximization.

Proposition 3. Let g∗t be the growth frontier achieved in the Planner Growth Equilibrium,
then g∗t = gFt . Furthermore, this allocation can be achieved by setting the R&D subsidy
component of ∆it to equalize ζit · (1 + ∆it) across firms.

1.3 Extensions
I consider several extensions in Appendix E. First, allowing for entry, rather than holding
the mass of firms constant, can amplify the cost of private frictions. R&D wedges reduce
the profits of innovative firms due to rising input costs, leading to lower entry. Fewer firms
implies more inventors per firm and, due to decreasing returns to scale, lower productivity.

Second, I show that the formulae developed above extend to frameworks with multi-
research line firms as in (Klette and Kortum, 2004), however, the counterfactual holds
constant the distribution of research lines across firms. The estimated growth impacts are
conservative if firms that expand in absence of frictions also tend to be more productive.

Third, the recent literature on labor market power argues that firms might be imperfect
substitutes for workers due to amenities or specialization, which may limit the gains from
reallocation (Card et al., 2018; Berger et al., 2022). I show that the formulae developed above
are preserved in this case with a lower implied scale elasticity γ reflecting specialization.
Resultingly, R&D wedges tend to be less costly due to lower gains from reallocation.

Finally, the model assumes fixed aggregate R&D inputs, implying that the level of R&D
wedges does not affect growth. I show that the formulae derived above extend to the case with
positive input supply elasticity, however, there is a supply adjustment term depending on
the average R&D wedge. The gains from reallocation thus coincide as long as this average
remains constant. The formulae also extend to multiple R&D production factors as
long as their supply is equally inelastic and frictions are common at the firm-level.
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2 Data and Measurement
2.1 Data
I focus my empirical analysis on research-active firms listed on US stock exchanges. This
choice is primarily motivated by the availability of sufficient data to measure the model prim-
itives and, thus, estimate R&D Allocative Efficiency. I discuss selection concerns together
with the main results.

I obtain annual firm-level R&D expenditure from WRDS Compustat, which collects the
data from mandatory filings. This data includes firms’ industry classification and accounting
data such as sales and employment.

I use patents granted by the US Patent and Trademark Office (USPTO) to measure
R&D outputs. Patents are arguably the most direct measure of R&D output available
to researchers. They capture an invention that the patent office deemed new and useful,
and grant the owners exclusive rights to its use, giving firms strong incentives to patent.
Nonetheless, patents may present an incomplete picture as not all inventions are patented
(Cohen et al., 2000). I propose to address this concern by focusing on firms that tend to
patent and by investigating robustness using measures independent of the patent system.

I use patent valuation estimates from Kogan et al. (2017) to measure the private value
created from innovation. Their methodology uses the firm’s stock returns around the patent
grant announcement to estimate its value such that larger returns translate into higher val-
uations. Patent valuations capture the private value of an invention, which is directly linked
to firms’ incentives to innovate. In contrast, other patent-based measures of innovation, such
as raw counts or citations, capture the quantity of innovation, but not its value to the firm.
As discussed above, divergence between the two concepts is an important object of interest
when estimating the aggregate impact of private frictions.

I consider forward-citations as a measure of the growth impact of R&D as I discuss
below. I construct forward-citations, i.e., citations received, by the patent within the first
5 years since its grant date using the USPTO’s citations files and normalize them by their
average value within an application year. These adjustments ensure that citations remain
comparable across years.

I aggregate forward-citations and valuations to the firm-year-level using the patent-to-
firm mapping in Kogan et al. (2017). Patents are recorded in their application year to reflect
the timing of innovation.

I restrict the sample to 1975–2018 and drop firms with consistently low R&D expenditure

11



(less than 2.5m 2012 USD per year), low patenting (less than 2.5 patents per year) or less
than 5 years in sample. The start year reflects that USPTO data is available for patents
granted after 1976, while the end year is chosen such grant decisions are likely final for
relevant patent applications. The final sample covers more than 80% of R&D expenditure
in Compustat and patent valuations in Kogan et al. (2017), and 40% of the R&D recorded
in BEA accounts. See Appendix B for more details.

2.2 Measurement
R&D Allocative Efficiency depends on four parameters: {γ, {ωit,∆it, ζit}}. The consensus in
the literature is to set γ = 1/2, which implies an R&D unit-cost elasticity of -1 (Acemoglu
et al., 2018; Akcigit and Kerr, 2018).5

R&D wedges can be measured up to a factor from the average R&D return, i.e., the
ratio of value created from R&D divided by its cost:

zitVit
Wtℓit

=
1

γ
· (1 + ∆it).

In the model, firms with high R&D returns are more constrained, implying larger wedges.
Key for this interpretation are common, log-linear production and cost functions, which yield
proportional marginal and average returns and are standard in the literature (Gancia and
Zilibotti, 2005; Aghion et al., 2014).

I measure R&D wedges over 5-year windows with a 1-year lag between R&D expenditure
and patent valuations:

1̂ + ∆it = γ ·
∑4

s=0 Patent Valuationsit+s∑4
s=0 R&D Expenditureit−1+s

.

Three measurement concerns arise immediately. First, R&D return dispersion may arise
due to differences in the scale elasticity of the innovation production function γ across firms.
Without adjustment, one would confound those for differences in R&D wedges. I, thus,
residualize measured R&D wedges with respect to industry × year cells under the assumption
that technology is similar within them. Secondly, measurement of R&D wedges requires ex-
ante expected R&D returns as firms equalize expected marginal benefits to marginal costs.6

5Terry (2023) estimates a γ of 0.4, while Terry et al. (2023) estimate a value of 0.8 at the county-level. The
estimates in Dechezleprêtre et al. (2023) imply a value for γ of 2/3 or larger, however the authors attribute
the large estimate to the presence of financial frictions. Appendix C.4 discusses the standard estimation
approach and reports estimates from my sample in line with the chosen value of 1/2.

6The model in Section 1 assumes no uncertainty around the value or quantity of inventions. In general, the
appropriate value is the expected discounted value created from innovation, which is proportional to the
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Realized R&D returns might differ from their expected value due to the stochastic nature of
the innovation process. Thus, I restrict the sample to observations with at least 50 patents
over the 5-year window to leverage the law of large numbers in closing the gap between
averages and expectations. This approach does not account for firm-level shocks that yield
common variation in realized patent valuations, which I investigate separately. Finally, not
all inventions are patented and patenting rates may differ across firms (Cohen et al., 2000).
Such differences could lead to variation in measured R&D returns due to patenting choices
rather than R&D wedges. Following Bloom et al. (2020), I use non-negative changes in
sales or employment as alternative measures of innovation output following the idea that
inventions lead firms to expand. My alternative measure of R&D wedges is then

1̂ + ∆it = γ ·
∑4

s=0 max{ Xit+s −Xit+s−1, 0}∑4
s=0 R&D Expenditureit−1+s

with X ∈ {Sales, Empl.}.

I discuss additional measurement concerns in Section 4.3.
R&D productivity can be measured from firms’ first-order conditions as

θit = (1 + ∆it)× (Wt · ℓit)1−γ ·W γ
t .

Note that the formula for R&D Efficiency is scale independent in θit (and ∆it) such that we
can drop the common wage intercept. I thus measure R&D productivity as

θ̂it = (1̂ + ∆it) ·

(
4∑

s=0

R&D Expenditureit−1+s

)1−γ

.

I consider three approaches to measuring the impact-value factor. In the first approach,
I follow the workhorse growth models and assume a constant factor across firms. In the
second approach, I measure impact-value factors from markups guided by their link in a
limit-pricing setup. In these models, firms’ innovation quality is only partically reflected in
markups such that they are not able to fully capture the additional social value created.7

I obtain markups either directly from Loecker et al. (2020) (µ̂it) or, alternatively, via the

expected value under homogeneous discount rates and a common gap between investment and realization.
7Let λi > 1 be the quality improvement over a potential competitor in a model with limit pricing. Then,
profits are proportional to markup 1 − λ−1

i , however, the growth impact is proportional to λi − 1. The
impact-value factor is the ratio of both, which is proportional to λi itself. Thus, we can use either markups
or profit rates to back-out the implied λi.
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value implied by firms’ profit rates. The impact-value factor is then given by

ζ̂it = µ̂it or ζ̂it =

∑4
s=0 Salesit∑4

s=0 Salesit −
∑4

s=0 Profitit

. (6)

In the third approach, I propose to use forward-citations as a direct measure of the
growth-impact of inventions (up to a constant factor) such that the impact-value factor is
given by the ratio of patent citations to valuations:8

ζ̂it =

∑4
s=0 Patent Citationsit+s∑4

s=0 Patent Valuationsit−1+s

. (7)

One potential concern with this measure is heterogeneity in citation conventions across
industries or time that affect the relative frequency of citations even if growth impacts
are comparable. I thus residualize impact-value factors with respect to industry-year fixed
effects. Another concern when relating impact-value factor to the R&D return is that they
might be related by construction due to the use of patent valuations. I, thus, replace them
with changes in sales when relating the impact-value factor to R&D wedges.

3 Exploring R&D Returns
Before estimating aggregate R&D Allocative Efficiency, I investigate the behavior of R&D
wedges in the micro-data. I use the terms R&D wedges and R&D returns interchangeably
here given their measurement equivalence in my context.

3.1 Basic Facts
In the frictionless benchmark economy, R&D wedges are equalized across firms and, thus,
measured R&D returns should be as well. Instead, I find large dispersion in measured R&D
returns as highlighted by their histogram in Figure 2. A firm at the 75th percentile of the
distribution has close to twice the median return in levels with a similar gap between the
median and 25th percentile. The standard deviation of log R&D returns is 0.9.

R&D return dispersion has increased throughout the sample. Comparing the early and
late sample in Table 1.B, I find that R&D return dispersion has risen by 32%. Rising
dispersion is a broad phenomenon with about 64% of industries having more dispersed R&D
returns in the later sample.

Large dispersion in investment returns echoes the literature on capital investment. Hsieh
and Klenow (2009) document large differences in the return on capital across U.S. firms, while
8See Ayerst (2022) and Akcigit and Kerr (2018) for similar interpretations of citations.
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Figure 2: R&D Returns are Highly Dispersed

P25 =
1.12

P50 =
1.7

P75 =
2.27

0

.1

.2

.3

.4

.5

D
en

si
ty

-2 0 2 4 6
ln R&D Return

SD = .93

Notes: Histogram of log R&D returns and density function of a normal distribu-
tion with same mean and variance. See text for details.

the frictionless investment model predicts none. Importantly, this literature argues that the
empirical return on capital dispersion implies large losses in aggregate production relative
to a return equalizing allocation. Comparing dispersion in both returns in Table 1.A, I find
that R&D return dispersion is 0.93/0.64− 1 ≈ 46% larger in my sample.

Large dispersion in R&D returns is not surprising if we expect significant measurement
error therein. At least four concerns may motivate that belief. First, we might be concerned
about the use of patents to measure innovation as it has been long recognized that not all
inventions are patented (Cohen et al., 2000). R&D returns might then reflect whether firms
patent their inventions rather than their quantity or value. One important dimension for this
consideration is industry differences in patenting conventions that could contribute to R&D
return dispersion. For example, patents are considered quite important in life sciences, but
less so in manufacturing (Mezzanotti and Simcoe, 2023). Empirically, I find that the contri-
bution of such cross-industry differences is small relative to overall R&D return dispersion.
Variation across firms in the same 6-digit industry and year accounts for 0.85/1.09 ≈ 78% of
the overall R&D return dispersion as reported in Panel A of Table 1. It is also not the case
that the importance of patenting is a strong predictor for within-industry dispersion. For
example, R&D returns are similarly dispersed within life sciences and manufacturing as re-
ported in Appendix Table C.2, even though both industries differ significantly in the degree
to which they consider patents essential to their intellectual property protection strategy.
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Table 1: Return Dispersion Across Comparison Groups

Within Cell R&D Return Return on Capital
SD SD ∆%

A. Across Industries
— 1.09 0.77 42%
Year 1.05 0.74 43%
NAICS3 × Year 0.93 0.64 46%
NAICS6 × Year 0.85 0.58 45%
B. Across Time
1975 – 2014 0.93 0.64 45%
1975 – 1990 0.74 0.46 62%
2000 – 2014 0.98 0.73 33%
C. Across Measures
Patent valuations 0.93 0.64 46%
∆ Revenue 1.11 0.64 73%
∆ Employment 1.35 0.64 111%

Note: Return measures residualized with respect to fixed effects indicated in
first column. Column headers SD report standard deviations of return measure.
Columns headers ∆% indicate percent difference of Return on R&D dispersion
with respect to return in consideration. Returns are measured in logs.

Furthermore, R&D return dispersion is a robust finding across alternative measures of R&D
output that do not rely on patents. For example, the dispersion is 1.11/0.93 − 1 ≈ 19%
larger when using revenue growth instead of patent valuations to measure R&D output as
reported in Panel C.9

A second potential concern relates to the use of patent valuations. Kogan et al. (2017) es-
timate these by using a non-linear transformation of stock-market returns around the patent
announcement window. This procedure likely entails some measurement error as it is impos-
sible to disentangle other events impacting the firm concurrently from the patent value. To
the degree that these confounding events are quantitatively important and independent of
each other over time, we might thus expect that R&D returns are partly driven by classical
measurement error and, thus, uncorrelated over time. Instead, I find that R&D returns are
highly persistent, as shown in Table 2, Panel A, with an implied annual autocorrelation coef-
ficient of 0.6971/5 ≈ 0.93.10 Importantly, all measures of R&D returns are highly persistent.
A structural variance decomposition of R&D returns leveraging this insight confirms that
9Naturally, these measures have issues of their own, however, I find that they are highly correlated with my
preferred measure as reported in Panel B of Table 2.

10I further find that persistence in R&D returns has remained stable over time in Appendix Table C.3. To
the degree that persistence is informative about (the lack of) measurement error, it thus appears stable
over time.
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transitory shocks, such as classical measurement error, contributes almost none of the overall
variation in R&D returns (Appendix G). Another concern might be that patent valuations
are strictly positive by construction, while some patents might be actually worthless (Jaffe
and Lerner, 2007). I show in Appendix D.1 that excluding low value patents from R&D
returns does not reduce their dispersion. Lastly, Kogan et al. (2017) assume that all patents
have an equal likelihood of being granted ex-ante to back out the value of innovation from
stock returns, which only reflect the unexpected component. I investigate adjustments based
on the patent’s technology class and quality in Appendix D.1 and find that neither reduces
measured R&D return dispersion.

Table 2: R&D Return Consistency across Time and Measures

Variable Estimate Std. err. R2 Observations
A. 5-Year Autocorrelation

Patent valuations 0.697∗∗∗ (0.020) 45.7% 7,623
∆ Sales 0.564∗∗∗ (0.024) 29.6% 7,455
∆ Employment 0.552∗∗∗ (0.026) 27.8% 6,447

B. Correlation with Baseline R&D Returns
∆ Sales 0.597∗∗∗ (0.033) 25.1% 11,688
∆ Employment 0.551∗∗∗ (0.038) 14.1% 10,870

Note: Each row reports the regression coefficient of a separate regression with dependent and independent
variable in logs. Panel A reports 5-year autocorrelation coefficients for alternative measures of R&D returns.
The respective R&D return is calculated as the ratio of the variable indicated in column 1 and R&D
expenditure at the 5-year level. Panel B reports contemporaneous correlations with alternative measures of
R&D returns as dependent variables and the primary measure of R&D returns as the independent variable.
All regressions control for NAICS3× Year fixed effects and standard errors are clustered at the NAICS6 level.
See text and Appendix for additional details.

A third concern is measurement error related to the distinctions between expected re-
turns, which should be equalized in the frictionless model, and realized returns, which might
not be. Under rational expectations, the gap between realized and expected R&D returns
should not be predictable with information available to the firm at the time of the invest-
ment. Under the assumption that expected returns are equalized across firms, it should then
also not be possible to predict differences in realized returns across firms. In contrast, and as
discussed above, I find that R&D returns are highly persistent and are therefore predictable.
I show that predictability persists at long time horizons in Appendix C.2. These results sug-
gest that R&D dispersion is not primarily driven by expectation-realization gaps. I further
investigate whether “superstar patents”, which we could be important given the famously
fat-tailed distribution of innovation outcomes, contribute to R&D return dispersion. I find
that measured dispersion is essentially unaffected by winsorizing patent valuations at the
95th percentile as reported in Appendix D.1.
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A final concern may be heterogeneity in the R&D scale elasticity within industry-year
cells that could drive variation in measured, but not true, R&D wedges. I investigate the
potential link between R&D returns and the R&D scale elasticity in Appendix C.4, where I
estimate the average R&D scale elasticity across deciles of the R&D return distribution. I
find stable estimates around 0.5 across R&D return deciles, which suggests that differences
in the scale elasticity are not a main driver of differences in measured R&D returns.

In summary, my robustness exercises suggest that neither measurement error arising
from the use of patents and patent valuations nor classical measurement error appear to
be significant drivers of R&D return dispersion.11 Table C.1 further investigates robustness
with respect to the specification and find that neither expanding the aggregation window
nor changing the timing leads to lower R&D return dispersion. Focusing on observations
with significantly more patents reduces measured dispersion marginally.

3.2 Economic Drivers
I investigate economic drivers of R&D return dispersion in Table 3.12 First, I investigate
general investment frictions in Panel A. Following the idea that investment may be distorted
across multiple margins, I investigate whether measures of capital investment frictions cor-
relate with R&D returns and find mixed results. On the one hand, R&D returns are uncor-
related with the return on capital, which is considered a summary measure for investment
frictions (David et al., 2016). On the other hand, R&D returns are highly correlated with
Tobin’s Q, which is also an established measure of investment frictions (Peters and Taylor,
2017). I also find mixed results for financial frictions. Firms with more liquidity, which
might be less constrained by cash flow concerns, tend to have lower returns, in line with
the idea that they are less constrained. On the other hand, firms with large dividend pay-
ments, which presumably are not very constrained either, have larger rather than smaller
R&D returns. Finding inconclusive results for measures of financial frictions is surprising
as a growing literature argues that intangible investments, including R&D, are particularly
constrained by them (Brown et al., 2009).

Second, R&D return dispersion could reflect firm-specific risk-premia driven by hetero-
geneous exposure to aggregate risk (David et al., 2022). As reported in Panel B, I find no
evidence that stock market βs, a measure of systematic risk, explain R&D returns. How-
ever, firms with volatile patent valuations tend to have higher R&D returns. Such a “risk-
11Appendix D.1 also considers misspecification arising from fixed costs, acquisitions of innovative firms, and

knowledge capital.
12See Online Appendix F for the associated theoretical foundations.
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premium” could arise if firms’ decision makers cannot fully diversify the innovation risk.

Table 3: Correlations with R&D Returns

Variable Estimate Std. err. R2 Observations
A. Frictions

Return on Capital 0.043 (0.068) 0.1% 11,844
Tobin’s Q 0.202∗∗∗ (0.030) 6.3% 10,471
Liquidity -0.048∗∗ (0.022) 0.3% 10,568
Dividend rate 36.499∗∗∗ (7.142) 1.5% 11,499

B. Risk
CAPM β 0.001 (0.065) 0.0% 6,799
Valuation risk 0.493∗∗∗ (0.132) 1.4% 10,961

C. Taxation
R&D user cost 1− τ -0.527 (0.617) 0.1% 11,247
Public patent involvement 1.392 (1.240) 0.2% 11,845

D. Dynamics
Long-term R&D growth 0.424∗∗∗ (0.054) 10.2% 6,525
Long-term TFP growth 0.451∗∗∗ (0.050) 3.7% 5,421
Prior excess stock return 0.260∗∗∗ (0.031) 1.1% 10,087
Prior TFP growth 0.316∗∗∗ (0.041) 1.1% 7,277

E. Inventors
Inventors 0.228∗∗∗ (0.032) 7.2% 11,845
Firm dominance 0.142∗∗∗ (0.045) 1.4% 10,477
Inventor specialization 0.233∗∗∗ (0.083) 0.4% 11,828

Note: Each row reports the regression coefficient of a separate regression with dependent variable log R&D
returns. All regressions control for NAICS3× Year fixed effects and standard errors are clustered at the
NAICS6 level. See text and Appendix for details.

Third, I find that R&D subsidies do not explain R&D return variation in Panel C.
Investment subsidies distort returns by reducing the true investment costs relative to reported
costs such that firms with large subsidies earn low reported returns (Hsieh and Klenow,
2009). Using data on state-level R&D tax credits from Lucking et al. (2019), I find that the
induced variation in R&D user costs only weakly correlates with R&D returns. Similarly,
public patent co-ownership does not explain a significant share of R&D return dispersion.

Fourth, I investigate the link between R&D returns and firm dynamics in Panel D.
Factor return dispersion arises naturally in models with adjustment costs (Asker et al.,
2014). With such frictions, a positive shock to R&D productivity leads to a temporary
rise in R&D returns as R&D output, which captures R&D inputs and productivity, adjusts
faster than R&D inputs alone, leading to a positive correlation between R&D growth and
returns. In line with this prediction, I find that long-term growth in R&D, i.e., its growth
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rate from t-1 to t+6, can account for around 10% of R&D return dispersion. Similarly, I
find a strong correlation with long-term TFP growth, which can be rationalized by the same
mechanism. Finally, I also find that prior TFP growth and stock returns are predictive for
R&D returns, suggesting, again, that they are associated with firm expansion and other
positive events for the firms. Such results may also be in line with information frictions or
behavioral biases leading to a slow response to positive news (Hirshleifer et al., 2013). They
appear less aligned with theories of over-reaction that would predict a negative correlation
between positive news and subsequent R&D returns due to over-investment (Bordalo et al.,
2018). A potential reconciliation would be that investors overreact, but managers do not. In
that case, returns would be large due to a divergence between investor and manager beliefs
as captured in the nominator and denominator, respectively. Such a setup could reconcile
the finding, e.g., with the findings in Bordalo et al. (2024) that the stock market overreacts
to positive news about aggregate fundamentals including major innovations.

Lastly, a growing literature finds that monopsony power plays an important role in
shaping the allocation of workers (Card et al., 2018; Lamadon et al., 2022). The literature
also finds that high-skilled workers, a group likely including inventors, are more affected by
monopsony power and that larger firm tend to have more thereof (Seegmiller, 2023; Berger
et al., 2022; Yeh et al., 2022). Monopsony power over inventors could drive R&D return
dispersion as firms with more of it restrict their hiring more aggressively to keep wage low
and, as a result, create more value per unit of cost (Lehr, 2024). In line with this idea, I find
that firms hiring more inventors have larger R&D returns in Panel E.13 In addition, I find
that firms dominating their inventor labor market and hiring more specialized inventors tend
to have larger R&D returns, in line firm-specific human capital or limited outside options as
sources of monopsony power (Acemoglu, 1997; Schubert et al., 2023).

Overall, the explanatory power of the mechanisms considered here is low, echoing similar
results in the return on capital literature (David et al., 2016). This finding makes the
interpretation of measured R&D wedges difficult, since we do not fully know their source.
Nonetheless, the documented dispersion marks a stark deviation from the predictions of a
frictionless model and can be interpreted using the formulae developed in Section 1.

Finally, I find inconclusive evidence on the link between R&D wedges and the impact-
value factor in Table D.3. While markup-based measures suggest slightly positive correlation,
patent-based measures suggest a negative correlation.
13This finding is also in line with a size-dependent R&D scale elasticity s.t. scaling up is costlier for large

companies. However, I do not find a systematic link between R&D returns and estimates of the R&D scale
elasticity as discussed in Appendix C.4. I also find that size in R&D matters rather than size overall.
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4 Growth, Wedges, and Policy
I next turn to estimating the macroeconomic impact of R&D wedges.

4.1 Combining Data and Model
Measurement. Per Proposition 2, I estimate R&D Allocative Efficiency as

Ξ̂t =

∑Nt

i=1 ω̂it · (1̂ + ∆it)
− γ

1−γ
·η̂t(∑Nt

i=1 ω̂it · (1̂ + ∆it)
− γ

1−γ
·η̂t
)γ with ω̂it =

θ̂
1

1−γ

it∑Nt

i=1 θ̂
1

1−γ

it

.

This approach assumes a representative sample for the U.S. R&D sector. Thus, the estimates
are biased towards a milder impact of R&D wedges if large, established firms tend to be less
impacted by frictions. I discuss sample selection further below and highlight that, within my
sample, it is the case that there appears to be more “misallocation” among smaller firms.

I consider two scenarios for adjustment factor η̂t. In the first case, I assume that R&D
wedges and impact-value factors are independent and, thus, set η̂t = 1. In the second case,
I estimate its value using citations divided by sales growth as a proxy for the impact-value
factor. The adjustment factor is η̂t =

√
1 + 2 · β̂t, where β̂t is the regression coefficient when

regressing R&D returns on the impact-value factor over a centered rolling 10-year window.
To get a sense of longer-run developments, I collapse annual estimates using geometric

averages. I consider the average over the full sample from 1975 to 2014 as well as the early
and late periods, 1975–90 and 2000–14, respectively. Comparing the early and late period
gives us a window into long-run changes in R&D Allocative Efficiency and their ability to
shed light on declining economic growth.

Finally, I calculate bootstrapping standard errors for the estimates. For each year, I
sample observations with replacement until I reach the true sample size and calculate the
annual aggregates. I repeat this exercise for 1000 bootstrap samples and report the standard
deviation of the resulting estimates together with non-parametric 95% confidence intervals.
Counterfactuals. Proposition 2 allows us to estimate the short-run impact of R&D wedges
by comparing the growth rate under the measured impact Ξ̂t to its hypothetical value under
Ξt = 1. This counterfactual assumes that offsetting R&D wedges is technologically feasible.
Even when this is not the case, the estimates are still informative about whether changes in
the economic growth rate arise from R&D wedges or the frictionless growth rate.

I estimate the long-run impact on economic growth and welfare for two scenarios. In the
endogenous growth scenario, I set Lt = L and ϕ = 0, such that setting Ξt = 1 achieves the
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frictionless growth rate gC , which I calibrate as gC = 1.5% · Ξ−1 to match the long-run US
growth rate. Misallocation reduces the long-run growth rate in this scenario.

In the second scenario—the semi-endogenous growth case—I assume that the frictionless
growth rate and population dynamics take the form

gCt = A−ϕ
t · Lγ

t · gC with ϕ > 0 and Lt+1 = (1 + n) · Lt.

Parameter ϕ > 0 determines the degree to which “ideas are getting harder to find” over time,
which is key to achieving constant long-run productivity growth with a growing population
(Jones, 1995). The long-run growth rate in this economy is pinned down by g = (1+n)γ/ϕ−1,
however, the short-run growth rate responds to changes in the environment as does the long-
run productivity level.14 In the counterfactual, I assume that the economy is on its long-run
growth path before the policy change and trace subsequent changes in productivity and
consumption. I set population growth to n = 1% and calibrate ϕ to achieve a long-run
growth rate of 1.5%.

4.2 The Long-run View
Consider the case of unrelated R&D wedges and impact-value factors first. The blue line in
Figure 3 plots the annual estimates of R&D Allocative Efficiency Ξt, while long-run values
are reported in Panel A of Table 4. The table also reports the welfare cost in consumption-
equivalent terms.

Frictions have a significantly negative impact on economic growth as measured through
R&D Allocative Efficiency. I estimate an average growth impact of -21.3% for the full
sample, which suggests a growth rate of 1.9% in absence of R&D wedges based on a realized
annual productivity growth rate of 1.5%. Unsurprisingly, such a stark slowdown of economic
growth has large welfare consequences. The model suggest that welfare would be 12% higher
in absence of R&D wedges. For comparison, Berger et al. (2022) estimate that monopsony in
the production sector reduces US output by 21% and welfare by 8%, while Hsieh and Klenow
(2009) estimate 30%–40% larger US output in absence of production factor misallocation.

The annual estimates further suggest that declining R&D Efficiency contributed to the
long-run growth slowdown. Estimated R&D Efficiency declined throughout the sample pe-
riod with a sharp downturn and partial recover during the 1990s, potentially reflecting dy-
namics during the Dot-Com boom. Comparing the estimates for the 1975–90 and 2000–14
period, I find that R&D Allocative Efficiency declined from -15% to -24% with an associated
14Stable growth requires constant Aϕ

t · Lγ
t , such that we can solve for At conditional on Lt.
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Table 4: The Impact of R&D Wedges on Economic Growth and Welfare

Time Horizon Growth Impact Ξ− 1 Welfare Cost
Est. Std. Err. 95% CI End. Semi-End.

A. Baseline
1975–2014 -21.3% (0.41%) [-21.9% -20.5%] 12.3% 11.7%
1975–1990 -14.7% (0.49%) [-15.4% -13.8%] 7.6% 7.4%
2000–2014 -24.0% (0.68%) [-25.0% -22.8%] 14.5% 13.7%
∆ Change -10.9% 5.4% 5.3%

B. Adjusted
1975–2014 -17.9% (0.36%) [-18.4% -17.3%] 9.8% 9.4%
1975–1990 -12.0% (0.40%) [-12.6% -11.2%] 6.0% 5.9%
2000–2014 -21.7% (0.62%) [-22.6% -20.6%] 12.6% 12.0%
∆ Change -11.0% 5.5% 5.3%

Notes: Table reports estimates for impact of R&D wedges across samples together
with their implications for welfare. Welfare changes are in consumption equivalent
terms. Standard errors and confidence intervals are calculated using bootstrapping.

Figure 3: R&D Allocative Efficiency Has Declined
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welfare loss of around 5%. This decline implies an 24%−15%
1−15% ≈ 11% slower short-run growth

rate, which accounts for 11%
40% ≈ 25% of the growth slowdown.15

Adjusting for the impact-value factor reduces the cost of R&D returns marginally, but
leaves their evolution essentially unaffected. As reported in Panel B, the long-run esti-
15Total factor factor productivity growth declined from 0.5% for the 1976–1995 period to 0.3% for the

2005–2018 period, a 0.5%−0.3%
0.5% ≈ 40% reduction. See Figure 1.
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mated impact of R&D wedges is -18%, which is slightly better than the unadjusted estimate.
Nonetheless, the estimated welfare cost of 9%–10% remain large. Finally, the change in the
economic growth rate implied by the evolution of the R&D Efficiency remains -11%.

Declining R&D Efficiency is also potentially important for estimating or calibrating the
degree to which “ideas are getting harder to find.” Bloom et al. (2020) use data for 1930–2010
to estimate an average decline of research productivity, defined as TFP growth divided by
the effective number of researchers, of 5.1% per year. Together with an average TFP growth
rate of around 1.65% they conclude that the effective degree of fishing-out, ϕ

γ
, is given by

5.1%/1.65% ≈ 3.1.16 Using their data and focusing on the decades starting in 1970 yields a
similar value of 3.3, however, this estimate does not take into account that declining R&D
productivity is partly driven by rising misallocation rather than pure fishing out. Adjusting
their estimates yields alternative values of 2.4 or 2.7 depending on whether we also adjust
the average TFP growth rate. Thus, taking into account rising R&D misallocation is not
only important for our understanding of the recent decline in productivity growth, but also
for estimating the degree to which “ideas are getting harder to find.”

4.3 Discussion
Table 5 report a range of robustness exercises.

First, not all inventions are patented, making patent valuations a potentially in-
complete measure of the private value created from R&D, even if it is the most reliable
one. I consider alternative measures of R&D output in Panel A and find that using patent
valuations yields the largest estimate of R&D Allocative Efficiency. Its decline is more (less)
pronounced when using sales (employment) growth instead of patent valuations.

Second, we do not have a convincing measure for the impact-value factor. My pre-
ferred specification estimates adjustment factor η by regressing citations over sales growth on
R&D returns. Alternatively, I consider using the profit-based measure of the impact-value
factor to estimate the adjustment term in Panel B. I find that the resulting estimates are
slightly larger, while changes over time continue to hover around a growth impact of -11%.

Third, I investigate the impact of entry and exit by focusing on continuing firms only.17

The estimates continue to suggest a significantly negative impact of R&D wedges on growth
of -16%, while changes over time predict a 9% reduction in economic growth.

Fourth, measurement error is an important consideration regardless of the precise
16See Table 7 in their paper and the accompanying text. Their model assumes γ = 1, however, it is straight-

forward to show that the equivalent measure in my model is the ratio of ϕ and γ.
17See Appendix D.3 on how I calculate estimates for continuing firms.
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measure of R&D wedges, however, I find little evidence thereof in practice. I consider two
sources in detail in Appendix G. First, the outcome of each innovation effort is uncertain
and, thus, we might be concerned that some of the variation in measured R&D wedges is
due to firms being more or less lucky in their research projects. I propose to estimate the
contribution of this channel in a bootstrapping approach in which I first redraw firms’ patent
valuations, and then calculate how far aggregated values are from the true expectation as
measured by the firms actual patent valuation. Naturally, these differences are smaller for
firms with more patents by the law of large numbers. Second, firms might be subject to ex-
post firm-level shocks that have a uniform effect on their R&D output. Such variation is not
accounted for by the bootstrapping approach as it is common across all inventions within
a given period. I propose an estimation methodology for this source of variation using a
GMM estimator in Appendix G. The main idea is to exploit the persistence of R&D returns
to estimate the contribution of non-persistent variation, such as one-off luck or firm-level
measurement error, to the overall dispersion in R&D returns. My results suggest almost no
contribution of these two sources of “measurement error” for my main estimates as reported
in Panel D. I also find that persistence in R&D returns has remain stable over time in
Appendix Table C.3, which supports the idea that any measurement error present captured
by the measure has remained stable as well. An alternative adjustment is proposed in Bils et
al. (2021), where the authors assume that measurement error is additive in levels rather than
logs. I implement this adjustment procedure and find that it indeed improves the estimated
R&D Allocative Efficiency. As reported in Panel D, the adjusted measure declines by 5%
compared to 10% in the baseline, however, the associated welfare costs remain sizable. See
Appendix G.3 for details.

Fifth, the joint measurement of observation weights and R&D returns could yield
mechanical correlation. Panel E confirms that equalizing weights or using sales growth
instead of patent valuations yields smaller estimates of R&D Allocative Efficiency while
holding the decline approximately equal.

Sixth, and as discussed above, the sample is skewed towards larger firms due to the
data sources and selection criteria. A representative sample would include a larger share of
smaller firms with, presumably, smaller R&D expenditure per firm as well. I explore size-
heterogeneity in Panel F and find that R&D Allocative Efficiency is smaller and declining
faster among firms with lower R&D expenditure is lower. This finding is in line with a
world in which smaller firms face more frictions, which is commonly assumed (Brown et al.,
2009), and suggest that a representative sample of firms might feature lower estimated R&D
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Allocative Efficiency as well as a faster decline therein, such that the estimates reported are
conservative as to the impact of frictions in the R&D sector. See Appendix D.5 for details.

Table 5: R&D Wedges, Economic Growth and Welfare — Robustness

Specification Growth Impact Ξ− 1 ∆ Welfare
1975–2014 1975–90 2000–14 ∆ End. Semi-E.

Baseline -17.9% -12.0% -21.7% -11.0% 5.5% 5.3%
A. Value of Innovation

∆ Sales -25.5% -19.6% -32.0% -15.4% 8.1% 7.8%
∆ Employment -40.3% -39.0% -43.9% -8.0% 3.8% 3.7%

B. Impact-Value Adjustment
Profit-Based -22.9% -15.7% -25.4% -11.5% 5.8% 5.6%

C. Entry & Exit
Continuing Firms -16.3% -11.5% -19.4% -8.9% 4.3% 4.2%

D. Measurement Error
Direct adjustment -18.0% -12.1% -21.7% -10.9% 5.4% 5.3%
Bils et al. (2021) -13.7% -10.5% -15.1% -5.1% 2.3% 2.3%

E. Observation Weights
Unweighted -21.6% -16.1% -25.1% -10.7% 5.3% 5.1%
Sales growth -23.9% -18.2% -26.3% -9.8% 4.8% 4.7%

F. Firm Size
Small R&D -25.2% -16.8% -30.7% -16.7% 9.0% 8.7%
Larger R&D -16.3% -10.3% -19.9% -10.7% 5.3% 5.1%

Notes: Table reports estimates for impact of R&D wedges across samples together with their
implications for welfare. Changes in welfare are in consumption equivalent terms. See text
and Appendix for details.

Finally, I investigate whether changes in R&D allocative efficiency have predictive power
at the industry level in Appendix C.3. I first show that the model predicts that R&D
allocative efficiency is negatively correlated with industry-level R&D expenditure and R&D
return, which captures the intuition that high allocative efficiency implies less waste. I
then test this prediction focusing on 10-year changes within industries and confirm a strong
negative correlation of both aggregates with R&D allocative efficiency. Note, also, that such
a relationship does not arise mechanically as R&D Allocative Efficiency is scale independent,
i.e., HD(0), in R&D expenditure and patent valuations. The evidence thus suggests that the
model has predictive power at the aggregate level, at least for U.S. industries.
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5 Conclusion
This paper presents evidence that frictions, and their impact on the allocation of R&D re-
sources, contributed to the recent decline in U.S. productivity growth. I reach this conclusion
based on a growth accounting framework capturing frictions flexibly through a wedge be-
tween the private marginal costs and benefits of R&D. In the model, the impact of frictions
is captured through a summary statistic, R&D Allocative Efficiency.

I measure the model fundamentals for a sample of US-listed firms over the 1975–2014
period. R&D wedges can be measured from R&D returns, i.e., the ratio of value created
from R&D to its costs. I measure these as the ratio of patent valuations divided by R&D
expenditure and show that there are large and persistent differences therein. In contrast, the
frictionless model predicts return equalization and associates R&D return dispersion with
frictions. R&D return dispersion persists in a large set of robustness exercises and mea-
surement error adjustments. Lastly, regression analysis suggests adjustment costs, financial
frictions, and monopsony power over inventors as potential drivers of R&D return dispersion;
however, most variation remains unexplained.

Next, I estimate the aggregate impact of R&D wedges by combining model and data. My
estimates suggests that frictions reduce US economic growth significantly and increasingly
so. I estimate for the full sample that economic growth was 18% slower due to frictions,
implying a welfare cost of 11% in consumption-equivalent terms. Furthermore, I find that
rising frictions can account for an 11% lower growth rate for 2000–14 compared to 1975–90,
which accounts for 25% of the observed productivity slowdown.

These findings suggest important avenues for future research. Most importantly, more
research is needed to understand the underlying forces driving rising frictions. A thorough
understanding of the variation in R&D wedges and impact-value factors may allow for the
development of potentially targeted policies and could thus be essential for improving U.S.
R&D productivity and economic growth.
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Appendix
A Proofs
Proof of Proposition 1. The proof of the proposition is entirely algebraic. Firstly, defining
θit = φit · Vit we can solve for firms’ demand for R&D inputs as

ℓit =

(
θit · γ

(1 + ∆it) ·Wt

) 1
1−γ

.

Plugging into the R&D resource constraint, we can solve for the R&D input price:

Wt

γ
= L

−(1−γ)
t ·

(∫ 1

0

(θit/(1 + ∆it))
1

1−γ · di
)1−γ

.

Next, using the firm’s first order condition, we can express the economic growth rate as

gt =

∫ 1

0

ζit · ℓit ·
Wt

γ
· di.

Plugging in the definition of the wage and firms’ R&D labor demand, we have

gt = Lγ
t ·
∫ 1

0
ζit · θ

1
1−γ

it · (1 + ∆it)
− γ

1−γ · di(∫ 1

0
θ

1
1−γ

it · (1 + ∆it)
− 1

1−γ · di
)γ .

Some rearrangement yields the formulae in the proposition.

Proof of Corollary 1. The formula follows immediately since the terms in the nominator
and denominator are expected values with normalized R&D productivity ωit acting as a
probability weight. Furthermore, and by Jensen’s inequality, Ξt ≤ 1 with equality in absence
of dispersion in R&D wedges. The final statement follows immediately from the second order
approximation provided in Lemma 1.

Proof of Proposition 3. The planner problem is given by

max gt =

∫ 1

0

ζit · zit · Vit · di

s.t. Lt =

∫ 1

0

ℓit · di and zit = φit · ℓγit
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The first order conditions give rise to R&D input demand

ℓit =

(
ζit · θit · γ

λWt

) 1
1−γ

, (A.1)

where λWt is the shadow wage.
One can confirm immediately, that the implied allocation coincides with the competitive

equilibrium iff ζit · (1+∆it) is a constant. All proportional level differences are absorbed into
the shadow wage and, thus, do not affect the allocation across firms.

Thus, the planner can implement the growth maximizing allocation by setting 1+∆it =

1/ζit.

Lemma 1. The second-order approximation of Ξt around ζit = ζ and ∆it = ∆ is given by

Ξt ≈ exp
(
−1

2
· γ

1− γ

(
σ2
∆ + 2 · σ∆,ζ

))
, (A.2)

where σ2
∆ is the weighted variance of log R&D wedges and σ∆,ζ is the ωit-weighted covariance

of log R&D and Impact-Value factors. The approximation is precise if all variables are
jointly log-normal and, in this case, weights are unnecessary for calculating the variance and
covariance.

Proof. The result follows immediately from the 2nd order approximation of Ξt around a
no-dispersion point.

Proof of Proposition 2. The proof for proposition follows by noting that the second-order
approximation of Ξt in Lemma 1 can be expressed as

Ξt ≈ exp
(
−1

2

γ

1− γ
σ2
∆ · β̃

)
with β̃ = 1 + 2 · σ∆,ζ

σ2
∆

.

In turn, it is straight-forward to show that a second order approximation of the formula in
Proposition 2 yields the same expression.

B Data Appendix
Inventor employment. Let Pit→t+4 be the set of successful patent applications for firm i

between t and t + 4 and Iit→t+4 be the set of associated inventors. I denote the number of
patents assigned to firm i and listing inventor j at time t as Pijt and the total number of
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patents listing j as inventor as Pjt. My measure of inventors is then given by

Inventorsit→t+4 =
∑

j∈Iit→t+4

∑4
s=0 Pijt+s∑4
s=0 Pjt+s

. (B.1)

Return on Capital. Following David et al. (2016), I measure the return on capital as the
ratio of sales to beginning of period capital stock. As for the R&D return, I construct the
measure at the 5-year level:

Return on Capitalit ≡
∑4

s=0 Salesit+s∑4
s=0 Capitalit+s

. (B.2)

Tobin’s Q. I define the (physical) investment Q as the ratio of firm valuation, defined as
stock price times outstanding shares plus debt net of cash holdings (prcc_f×csho+dltt+
dlc − act), to physical capital (ppeqgt).
Liquidity. I define liquidity as cash holdings divided by assets ch/at.
Dividend rate. I define the dividend rate as dividends over assets dvt/at.
Public patent involvement. I classify patents as connected to public actors either if they
are assigned to a government entity, research lab, or university, or if they have a government
interest statement. Public involvement is the share of patent valuations connected to public
actors for the 5-year window.
Firm dominance is constructed in two steps. First, for each of a firm’s new patent within
a 5-year window, I calculate the share of inventors working for the firm among those that
worked on patents in the exactly same technology classification. For the latter, I use the
complete CPC classification of the patent, which has more than 600 technology classes,
which are non-exclusive at the patent level. Patents of the same technology class are thus
those that have exactly the same classifications as the patent in consideration. Second, I
aggregate to the firm-level by taking a simple average over the firm’s new patents. Note
that the resulting measure is between 0 and 1 by construction with 1 implying maximal
dominance and vice versa.
Inventor specialization is constructed in two steps. First, I calculate inventor specializa-
tion for a given 5-year window as the average cosine similarity between patent classifications
in an inventors portfolio of new patents. For each patent I then create an indicator vector
over the set of available patent classification with individual categories weighted by their
inverse frequency. I then calculate the average cosine similarity across all patents in the
portfolio and take the simple average across all patents. This measure is between 0 and 1
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by construction with 0 implying completely different patents and 1 that all patents have
the same technology classification. Second, I aggregate to the firm-level by taking a patent-
weighted average across the firm’s inventors.

C Empirical Appendix
C.1 Additional Robustness for R&D Return Dispersion

Table C.1: R&D Return Dispersion Across Specifications

Specification Standard
Deviation Observations

A. Aggregation horizon
1-year 1.00 11,083
5-year 0.93 11,845
10-year 0.92 11,845
20-year 0.91 11,845

B. Realization horizon
Same year 0.86 10,885
1-year 0.93 11,845
2-year 0.97 10,852
5-year 1.08 8,377

C. Minimum Patents
50 patents 0.93 11,845
100 patents 0.84 7,846
200 patents 0.79 4,859

Note: All returns in logs and residualized with respect to NAICS3-Year fixed
effects. Aggregation horizon is the number of years over which valuations and
R&D expenditure are summed. Realization horizon is the difference between
the patent application year and the year of R&D expenditure considered.
Unless otherwise specified, R&D returns are measured with a 5-year aggregation
horizon, 1-year realization horizon, and 50 minimum patents.

C.2 The Realization-Expectation Gap
The standard, frictionless firm investment model adapted for R&D equalizes the expect
return on R&D across all firms. Variation in realized R&D returns could then arise simply
due to the stochastic nature of innovation:

ln
(
zit · Vit
ℓit ·Wt

)
︸ ︷︷ ︸

Realized R&D Return

= ln
(
E[zit · Vit]
ℓit ·Wt

)
︸ ︷︷ ︸
Expected R&D Return

+ ln
(

zit · Vit
E[zit · Vit]

)
︸ ︷︷ ︸

Realization-Expectation Gap

, (C.1)
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Table C.2: R&D Return Dispersion Across Industries

Industry Standard
Deviation Observations

All industries 0.93 11,844
Life Science 0.82 1,630
IT 1.07 4,732
Manufacturing 0.83 5,108
Other 0.83 374

Note: R&D returns residualized with respect to NAICS3×Year fixed effects. Returns
are measured in logs. Industries are defined as in Mezzanotti and Simcoe (2023).

where the expectations are taken with respect to the firm’s information set at the time of
the investment decision.

Assuming that firms optimize and have rational expectation, the realization-expectation
gap should be an i.i.d. random variable.18 Thus, one should not be able to predict it using
any information that in the firm’s information set at the time of the investment decision.
Otherwise, the firm would chose a different investment level that would make the R&D
return unpredictable beyond its expected level. Furthermore, this property should extent to
the realized R&D return overall as long as expected R&D returns are indeed equalized.

As I show next, this prediction is not borne out by the data. In particular, I show that
past R&D returns are a consistent predictor of future R&D returns by estimating a simply
autoregressive model:

lnR&D Returnit = αj(i)t + βh lnR&D Returnit−h + ϵit, (C.2)

where αj(i)t are industry-year fixed effects. Following the argument above, we expect βh = 0

as long as lnR&D Returnit−h was in the information set of the firm making its investment
decision and expected R&D returns are equalized.

I test this hypothesis for several values of horizon h. I choose 5 years as the minimum
horizon to ensure that the information contained in both returns is non-overlapping, however,
longer horizons might be more reliable since they provide a clearer delineation between the
lagged and current returns.

The estimates in Figure C.1 suggest that R&D returns are highly predictable, even at
18This statement is general and can be seen immediately by assuming innovation outcomes are log-normal.

In this case, the realization-expectation gap is a normal random variable.
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longer horizons, using their own lagged values as predictors. The autocorrelation coefficient
at the 5-year horizon is 0.7 and declines to 0.3 for the 15-year horizon as one would expect,
e.g., in a standard AR(1) model. I, thus, transform the coefficients using their h’s root to get
an implied annual autocorrelation coefficient. The estimated values are consistently above
0.9 confirming that R&D returns are indeed highly persistent and, thus, predicable. We
can, thus, reject the hypothesis that variation in R&D returns is primarily driven by the
stochastic nature of realization vs expectation.

Figure C.1: R&D Returns are Highly Persistent
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Notes: This figure plots estimated autocorrelation coefficients together with their
implied annualized values. 95% confidence intervals are shaded. All regressions
control for industry-year fixed effects and standard errors are clustered at the
NAICS3 level. Standard errors for the implied coefficients are calculated using
the Delta method.

C.3 Model Prediction and Industry Trends
Beyond the prediction linking aggregate R&D misallocation to productivity growth, the
model also makes predictions about R&D performance at the industry level that can be
tested empirically. In the following, I document that the model’s prediction for the link
between R&D Allocative Efficiency and industry-level R&D expenditure or R&D returns
are born out in the data.

The model predicts a positive correlation between R&D allocative efficiency and produc-
tivity growth, all else equal. As per the model formula,

ln gt = ln gFt + lnΓt + lnΞt.
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Table C.3: R&D Return Persistence is Stable Across Time

(1) (2) (3)
R&D Return in t+ 5

R&D Return 0.697*** 0.738*** 0.752***
(0.020) (0.032) (0.042)

R&D Return × Year ≥ 1995 -0.064
(0.040)

R&D Return × Year ∈ {1991− 1999} -0.093*
(0.053)

R&D Return × Year ≥ 2000 -0.052
(0.052)

R2 0.46 0.46 0.46
Observations 7,623 7,623 7,623

Note: This table reports autocorrelation coefficient estimates. All variables are in logs. Regressions control for
NAICS3 × Year fixed effects. Standard errors clustered at the NAICS6 level.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.

In practice there are two challenges with investigating this relationship at the industry
level. First, it is not clear at what time horizon R&D flows into productivity growth in
practice. R&D is typically associated with technology development, which is different from
deployment and, thus, productivity growth. Second, the formula need not hold at the indus-
try level, e.g., if R&D workers can freely move across industries. In that case, misallocation
is not reflected in industry R&D wages and, resultingly, the relationship between productiv-
ity growth and misallocation could even go in the opposite direction. In particular, suppose
that (1 + ∆it) and θit are log-normally distributed in cross-section and ∆it ⊥ ζit. Then, we
have

lnΞit = −1

2
· γ

1− γ
· σ2

i,∆.

Furthermore, we can solve for the industry growth rate as

ln git = − γ

1− γ
· lnWt +

1

2

[(
γ

1− γ

)2

σ2
i,∆ +

(
1

1− γ

)2

σ2
i,θ − 2 · γ

(1− γ)2
· σi,∆θ

]

It follows that there could be even a strong negative correlation between both measures
unless σi,∆θ and σ2

i,∆ are strongly correlated across industries. Key to this conclusion is that
lnWt does not co-vary with σ2

i,∆.
Thus, I instead focus on total R&D expenditure and returns. In particular, one can show
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that the total R&D return for an industry i is given by

ln
(∫

j∈Ii zjt · Vjtdj∫
j∈Ii ℓjt ·Wtdj

)
= −1

2

(
1− γ2

(1− γ)2
· σ2

i,∆ − 2 · 1 + γ

1− γ
· σi,∆θ

)
.

Furthermore, total R&D expenditure is given by

ln
(∫

j∈Ii
ℓjt ·Wtdj

)
≈ − γ

1− γ
lnWt +

1

2

1

1− γ

(
σ2
i,∆ + σ2

i,θ − 2 · σi,∆θ

)
Thus, both measures should be negatively correlated with R&D Efficiency at the industry

level if the covariance of σi,∆θ and σi,∆ is sufficiently small.
I investigate this relationship for 10-year differences at the industry level using OLS .

Differences ensure that I focus on changes within industries rather than permanent hetero-
geneity. As reported in Table C.4, the predictions are born out in the data. Industries with
lower allocative efficiency spend more on R&D and have higher aggregate R&D returns.
Intuitively, the documented relationship reflect the waste from R&D misallocation.

Table C.4: R&D Allocative Efficiency and Industry R&D Performance

(1) (2) (3) (4)
A. R&D Expenditure ∆ R&D Expenditure
∆ R&D Efficiency -0.751*** -0.660*** -0.423*** -0.294**

(0.139) (0.122) (0.142) (0.130)

B. R&D Return ∆ R&D Return
∆ R&D Efficiency -1.553*** -1.645*** -0.549*** -0.595***

(0.214) (0.222) (0.178) (0.187)
Industry FEs ✓ ✓
Year FEs ✓ ✓
Observations 900 900 900 900

Note: All variables in 10-year log-differences over 5-year aggregates. An observation is an industry-year.
Robust standard errors in parentheses.

Standard errors in parentheses. Significance levels: * 10% , ** 5%, *** 1%.
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C.4 R&D Returns and the Scale Elasticity
As discussed in the main text, the equilibrium R&D return is the product of the inverse
R&D scale elasticity and the R&D wedge:

zit · Vit
ℓit ·Wt

=
1

γit
· (1 + ∆it). (C.3)

To identify the R&D wedge separately, I assume that the R&D scale elasticity is com-
mon within industry-year cells, s.t. we can recover the R&D wedge by residualizing the
R&D return. Naturally, this approach will also residualize with respect to any systematic
variation in R&D returns across industry-year cells and, thus, be conservative with respect
to the overall variation in R&D wedges as long as the identification assumption holds. In
practice, we might be concerned that there is remaining variation in the scale elasticity
within industry-year cells, leading to measurement error in the R&D wedges. As discussed
in the main text, such measurement error could bias the estimated R&D Allocative Effi-
ciency measure downwards and, thus, lead to an upwards bias of the estimated impact of
R&D misallocation.

Here, I attempt to shed further light on potential differences in the R&D scale elasticity
and its link the R&D return by directly estimating the former and linking it empirically to
the latter. In short, I find no evidence of systematic difference in the R&D scale elasticity
across the R&D return distribution. This finding suggests that differences in the R&D scale
elasticity are not a strong contributing factor to R&D return dispersion and, thus, to measure
R&D misallocation.

The dominant approach in the literature to estimating the R&D scale elasticity is by
investigating the relationship between R&D tax credits and R&D expenditure. Let τit be the
firm-specific R&D tax credit, then equilibrium gross R&D expenditure of frictions is given
by

ln(ℓ∗it ·Wt) =
1

1− γit
ln(γit · θit)−

γit
1− γit

lnWt −
1

1− γit
· ln(1− τit)−

1

1− γit
· ln(1−∆it).

Suppose that γit = γ, then it follows that we can estimate it by regressing measures of
(1− τit) on log R&D expenditure. The literature implements this approach by investigating
changes in R&D tax credits. In the case of the US, variation in these rates is typically
measured at the state level (Lucking et al., 2019). Following this approach, I link data on
tax credits to firms in my sample via their headquarter state. I focus on measures of the
effective R&D tax credit from Lucking et al. (2019).
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The case of heterogeneous R&D scale elasticities presents several challenges. First, we
can never fully identify γit since it only applies to one observation. Second, even if we estimate
it for a group of firms with sufficient observations, it is unclear ex-ante how to define groups
with homogeneous R&D scale elasticities other than through industry affiliation. In the case
of the latter, taking fixed effects remains a more conservative approach than estimation.

Given that the primary concern for me is the potential link between the R&D scale
elasticity and the R&D return, I propose to estimate the scale elasticity by quantiles of the
R&D return distribution. In particular, I estimate it for deciles in the following specification:

lnR&D Expenditureit = αi+γt+
∑

i=1,...,10

βj ·{R&D Returnit ∈ Djt}·ln
(
1− τs(i)t

)
+ϵit, (C.4)

which includes firm and year fixed effects. The set Djt denotes decile j of the R&D return
distribution (adjusted for the R&D tax credit), which I allow to vary at the year level to
account for aggregate changes in the R&D return, which is especially relevant during the Dot-
Com boom. Note that industry and state are linked at the firm level and, thus, subsumed
in firm fixed effects. We can then estimate the implied scale elasticities themselves as − β̂j+1

β̂j

and calculate the associated standard errors via the Delta-method. The parameter estimates
are unbiased if there is no variation in the R&D scale elasticity within the identified groups.
This approach also performs well in simulations even with a continuous distribution of R&D
scale elasticities as long as differences in the the latter contribute significantly to overall
R&D return dispersion.

The regression coefficients reported in Panel A of Figure C.2 suggest that the sensitivity
of R&D expenditure with respect to R&D tax credits not systematically different across
declines of the R&D return distribution. Panel B confirms that this result extends to the
implied estimates of the R&D scale elasticity, which are centered around 0.5. Thus, this
exercise suggests that differences in R&D returns are not primarily driven by differences in
the R&D scale elasticity.

41



Figure C.2: Estimates for β and γ across the R&D Return Distribution
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Notes: Panel A reports coefficient estimates from regression the implied unit costs of R&D expenditure for
a sample of Compustat firms. Regression controls for firm, state, industry, and year fixed effects. Standard
errors are clustered at the NAICS6 level. The sample restricts to firms with at least 10 patents over the
subsequent 5-year window and within-year deciles of the R&D return distribution are taken over 1-year R&D
returns.
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Online Appendix
Not for publication

D Additional Empirical Results
D.1 Measurement Robustness

Table D.1: Return Dispersion with Adjustments

Adjustment Standard
Deviation Observations

A. Acquisitions
Unadjusted 0.923 11,829
Adjusted (s = 6.3%) 0.910 11,829
Adjusted (s = 8.5%) 0.909 11,829
Adjusted (s = 100%) 0.982 11,829

B. Fixed-costs
Unadjusted 0.924 11,807
Adjusted 0.937 11,807

C. Knowledge capital
R&D Expenditure 0.925 11,845
Knowledge capital 0.961 11,845
Organizational capital 0.985 11,845

Note: See text for description of measures. All return measures residualized with respect
to NAICS3×Year fixed effects. Second column reports standard deviation of log R&D
returns.

Acquisitions, which are common in the innovation economy, might lead to measurement
error in R&D returns due to misattribution, i.e., by not counting all R&D costs associated
with the measured patents (Phillips and Zhdanov, 2013; Fons-Rosen et al., 2023). Suppose
that the firm acquires some inventions that are subsequently patented and added to total
value created zit · Vit, however, the costs are recorded as acquisition cost Aqc.it instead of
R&D expenditure R&Dit. Assuming that the firm is otherwise unconstrained, the measured
R&D return then becomes

Vit · zit
R&Dit

=
1

γ
·
(
1 +

Aqc.it
R&Dit

)
,

which may yield measured R&D return dispersion, to the degree that acquisition intensities
differ across firms, even though true R&D returns are equalized.
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I propose the following approach to investigating the importance of acquisitions for
R&D return dispersion. First, I assume that firms use a fixed fraction s of total reported
acquisition expenditure on innovative products such that Aqc.it = s · Total aqc.it. Total
acquisition expenditure is reported in Compustat. Second, assuming that the acquisition
intensity is relatively small, we can estimate s as the semi-elasticity of R&D returns with
respect to the total acquisition intensity using OLS. I find s ∈ {6.3%, 8.6%} depending on
the fixed effects. Finally, we can construct adjust R&D returns as

Vit · zit
R&Dit + ŝ · Total aqc.it

=
1

γ
.

Panel A of Table D.1 reports the associated results. Adjusting for acquisitions marginally
reduces R&D return dispersion, however, the magnitudes are small. Adjusting by 8.5% of to-
tal acquisitions reduces measured R&D return dispersion by 1.5%. Counting all acquisitions
as R&D expenditure increases R&D return dispersion.
Fixed costs of R&D. Suppose firms face R&D fixed costs fi · Wt. Then, total R&D
expenditure is (fi + ℓit) ·Wt and the frictionless R&D return is

Vit · zit
(fi + ℓit) ·Wt

=
1

γ
· ℓit
fi + ℓit

. (D.1)

Resultingly, as long as firms face some fixed-costs, their average R&D return will be in-
creasing in their quantity of R&D conducted ℓit and we have R&D return dispersion that is
unrelated to frictions. Note, however, that the average R&D return for very large firms, i.e.
ℓit >> fi, is still approximately constant.

I propose a simple approach to investigate the importance of fixed costs. First, I assume
that fixed costs are identical within a NAICS3×5-Year cell. Second, let ∆̄ be the average
R&D return for a in the top 75th percentile and ∆ be the average R&D return for a firm
in the 25th percentile. I can then estimate the industry specific γ̂ as inverse of the average
R&D return for firm in or above the 75th percentile of R&D expenditure. Finally, let TC be
the average total R&D expenditure of a firm in 25th percentile of the R&D cost distribution.
I can then estimate fixed costs and adjusted R&D returns as

f̂i ·Wt = TC i ·
(
1− ∆i

∆̄i

)
and Vit · zit

TCit − f̂i ·Wt

=
1

γ
.

The measure will estimate larger fixed costs if firms with high R&D expenditure also tend
to have much larger R&D returns and vice versa. The corrected R&D returns should be
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equalized across firms.
The fixed-costs adjustment increases measured R&D return dispersion marginally as

reported in Table D.1, Panel B. Thus, fixed-costs do not appear to be a significant source of
measured R&D return dispersion.
Knowledge capital. R&D expenditure is often interpreted as a cumulative investment
in the firms knowledge base (Peters and Taylor, 2017). Under this alternative view, R&D
capital, rather than expenditure, is the appropriate denominator for the R&D returns. I
explore the robustness of my findings with respect to the input measure using the knowledge
capital and organizational capital measures developed in Ewens et al. (2022). The knowledge
capital measure is built up from R&D investments only, while organizational capital focuses
on other overhead expenses. I refer to the sum of both as organizational capital. R&D
return dispersion is strictly higher when using either the knowledge or organizational capital
as reported in Table D.1, Panel C.
Outlier patents. Innovation outcomes are famously fat-tailed: While most inventions have
moderate impacts, some transform entire industries (Akcigit and Kerr, 2018). This consider-
ation raises the question as to whether variation in R&D returns is driven by “outlier-patents”
with extremely large valuations. I investigate this question by creating winsorized measures
of patent valuations that ignore value above the top 1% or top 5% of the annual patent
valuation distribution and recalculate R&D return dispersion. As reported in Table D.2,
Panel A, winsorizing patent valuations at the top 1% (5%) reduces R&D return dispersion
by 1% (3.6%). Thus, only a small fraction of the dispersion in R&D returns is potentially
attributable to outlier patents.
Low value patents. Jaffe and Lerner (2007), among others, argue that changes in patent
law, grant procedures, and enforcement have led to an onslaught of low quality patents with
questionable economic value. The methodology in Kogan et al. (2017) takes into account
low quality patents, however, we might still wonder whether their presence adds more noise
to measured R&D returns.19 I investigate this question by constructing measures excluding
valuations below 250k (500k) in 2010 USD and recalculating R&D return dispersion.20 As
reported in Table D.2, Panel B, excluding low quality patents from the measure increases
measured dispersion in R&D returns slightly.
19Patent valuations from Kogan et al. (2017) are strictly positive and monotonically increasing in the stock

market return. Thus, even if the stock market is unresponsive, because the patent is worthless, the patent
is assigned a positive value.

20I find that 10% (15%) of patents are valued less than 250k (500k) from 1975–84, while 17% (22%) are for
the 2005–14 period.
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Table D.2: Return Dispersion with Patent Valuation Adjust-
ments

Adjustment Std. dev. of
R&D return Observations

A. Outlier patents
Unadjusted valuations 0.925 11,845
Winsorized at top 1% 0.916 11,845
Winsorized at top 5% 0.892 11,845

B. Low value patents
All valuations 0.925 11,845
Valuations > 250k 0.942 11,845
Valuations > 500k 0.959 11,842

C. Class grant rate
Unadjusted 0.925 11,845
Adjusted 0.933 11,845

D. Value-dependent grant rate
η = 0 (Unadjusted) 0.925 11,845
η = .05 0.968 11,845
η = .25 1.163 11,845
η = .5 1.740 11,845
η = 1.5 2.584 11,845
η = 2 1.648 11,845

Note: See text for description of measures. All return measures residualized with
respect to NAICS3× Year fixed effects. Second column reports standard deviation of
log R&D returns.

Measurement details of patent valuations. Kogan et al. (2017) measure patent val-
uations using the idea that a patent grant should increase the value of the firm by the
unexpected part of the patent value. Let M be the valuation of the firm, V be the value of
the patent, and π the ex-ante probability of the patent being granted, then the change in
firm valuation ∆M at the moment that the patent is granted should equal

∆M = (1− π) · V or, equivalently, V =
∆M

1− π
. (D.2)

They measure the nominator using stock market returns and assume that the probability
that a patent is granted is constant across all patents. The latter assumption is quite
stringent for at least two reasons. First, patents of different patent classes might have
different probabilities of being granted. For example, during the 1991–2014 period, 85% of
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patents applications classified as semiconductor memory devices (CPC subclass G11C) were
granted within 3.5 years compared to 30% of those classified as healthcare informatics (CPC
subclass G16H). Second, patent grant decision are assumed to be independent of the value
of the patent. Such an assumption would not hold, e.g., if higher quality patents are more
valuable, but also more likely to be granted.

I investigate whether either of these possibilities contributes to R&D return dispersion
as follows. First, I use data on patent application and grant decision from the USPTO for
the 1991–2014 period to calculate the grant probability by patent class and construct an
adjusted valuation that takes into account differences in grant probabilities. For a given
CPC subclass, I calculate the grant probability as the share of patents that were granted
within 3.5 years of the application. Second, I assume that the probability of patent rejection
takes the form 1−πp = π0 ·V −η

p , where η measures the degree to which higher value patents
are also more likely to be granted. The adjusted patent valuation is

Ṽp =

(
V · 1− π̄

π0

) 1
1−η

. (D.3)

I calibrate π0 at the annual level to keep the average patent valuation constant and ex-
periment with alternative values for η. Optimally, one would want to estimate this value,
however, we only observe valuations for granted patents.

I find that neither adjustment reduces the measured dispersion as reported in Table
D.2. Adjustment for class grant probabilities, as reported in Panel C, increase R&D return
dispersion marginally. Panel D considers value-dependent grant rates and finds that the
resulting R&D return dispersion can be significantly larger. For example, it increases by
25% when assuming that a 10% larger patent valuation translated into a 2.5% higher grant
probability.

D.2 Relationship with Impact-Value Factors
I investigate the link between R&D wedges and the impact-value factor in Table D.3 and find
mixed results. On the one hand, markup-based measure suggest slightly positive correlation.
For example, I find a significant positive correlation of the R&D return with the profit-implied
markup, i.e., revenue divided by revenue minus cost, implying that firms with higher R&D
returns also tend to have larger markups. The same relationship, although smaller in absolute
magnitude, holds when using the markup measure developed in Loecker et al. (2020). To the
degree that markup differences are primarily driven by persistent differences in the quality
of innovation, as in a model with limit pricing and heterogeneous innovation quality, these
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results suggest that the impact-value factor might amplify the misallocation due to R&D
return dispersion.

On the other hand, patent-based measures suggest a negative correlation. For example, I
find a slightly negative correlation when measuring the impact-value factor as citations over
sales growth. I also find a robust negative correlation when using citations over valuations
to measure the impact value factor and sales growth over R&D expenditure to measure the
R&D wedge. Finally, using the text-based patent quality measure developed in Kelly et al.
(2021), I find a strong negative correlation with the R&D return. Thus, if these patent-based
measures provide a good proxy for the impact-value factor, then they might partly offset
misallocation due to R&D wedges.

Table D.3: The Relationship of R&D Wedges and Impact-Value Factors

Impact-Value Factor Estimate Standard Error R2 Observations
A. Markup-based Measures

Estimated Markup 0.030∗∗∗ (0.007) 2.7% 10,615
Profit-implied Markup 0.066∗∗∗ (0.016) 4.6% 11,845

B. Patent-based Measures
Citations/∆ Sales -0.077 (0.054) 0.3% 11,688
Citations/Valuations∗ -0.201∗∗∗ (0.032) 3.8% 11,688
Text-Impact/∆ Sales -0.184∗∗∗ (0.053) 1.9% 7,481

Note: Each coefficient stems from a separate regression with the R&D wedge as the independent variable and
a measure of the impact-value factors as the dependent variable. The R&D wedge is measured as the ratio of
patent valuations over R&D expenditure excepts for the third row, where it is measured as changes in sales over
R&D expenditure. All variables are in logs. Regressions control for NAICS3× Year fixed effects and standard
errors are clustered at the NAICS6 level.

D.3 Constructing Estimates for Continuing Firms
I investigate whether entry and exit contributed to the evolution of R&D Allocative Effi-
ciency by constructing a measure thereof solely for continuing firms. I construct the baseline
measure in 1975 and annual changes in the Impact of R&D wedges for all subsequent years,
which I accumulate over time. For the year 1976, I first filter to firms active in 1975 and
1976. For these firms, I estimate of R&D efficiency for both 1975 and 1976. I then take the
ratio to get the rate of change and apply it to my original estimate for 1975. Subsequent
years are calculated accordingly.

Let Ξ̂t be the baseline estimate for the Impact of R&D wedges for year t. Let Ξ̂t,t−1
t be

the estimate when using only firms that were active in both t and t− 1 with Ξ̂t,t−1
t−1 being the

respective value for t− 1. I then calculate the time-series for the Impact of R&D wedges for
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continuing firms Ξ̂C
t as

Ξ̂C
t =

Ξ̂t if t = 1975

Ξ̂C
t−1 ·

(
Ξ̂t,t−1
t

Ξ̂t,t−1
t−1

)
if t = 1976, ..., 2014

. (D.4)

D.4 Robustness for Aggregate Measures
Table D.4 reports estimates of R&D efficiency for alternative specifications.

Table D.4: R&D Wedges, Economic Growth and Welfare — Specification Robustness

Specification Growth Impact Ξ− 1 Welfare Cost of ∆
1975–2014 1975–90 2000–14 ∆ End. Semi-End.

A. Fixed Effects
Year -21.3% -15.4% -25.2% -11.7% 5.8% 5.7%
NAICS3 × Year -17.9% -12.0% -21.7% -11.0% 5.5% 5.3%
NAICS6 × Year -13.5% -8.1% -17.6% -10.3% 5.1% 5.0%

B. Minimum Patents
50 Patent -17.9% -12.0% -21.7% -11.0% 5.5% 5.3%
100 Patents -17.3% -10.7% -21.7% -12.3% 6.2% 6.0%
200 Patents -16.5% -9.4% -21.5% -13.4% 6.8% 6.7%

C. Time Horizon
5-Year -17.9% -12.0% -21.7% -11.0% 5.5% 5.3%
10–Year -18.1% -16.3% -19.8% -4.2% 1.9% 1.9%
20–Year -17.2% -17.9% -18.6% -0.9% 0.4% 0.4%

Notes: Table reports estimates of R&D efficiency across samples together with their implications
for welfare. Changes in welfare are in consumption equivalent terms. See text and Appendix for
details.

D.5 Unobserved Firms and Size Heterogeneity
The main results assume that the sample is broadly representative of firm conducting R&D.
However, firms covered in Compustat, and especially those that also patent frequently, tend
to be larger than the average firm in the economy, including those that also conduct R&D.
In this section, I first introduce a decomposition of aggregate efficiency for subsamples and
then investigate size heterogeneity within my sample to understand the implications of adding
unobserved firms with, on average, lower R&D expenditure.

Let there be a total mass Mt of firms whereof MU
t are unobserved and MO

t are observed.
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Then, one can decompose overall R&D Allocative Efficiency as:

Ξt = ΩU
t · ΞU

t + ΩO
t · ΞO

t , (D.5)

where

ΩX
t =

LX
t

Lt

·

∫MX
t
ωX
it · (1 + ∆it)

− 1
1−γ · di∫

Mt
ωit · (1 + ∆it)

− 1
1−γ · di

−(1−γ)

and ωX
it = θ

1
1−γ

it /(
∫
MX

t
θ

1
1−γ

it · di) for X ∈ {U,O}.
It follows immediately, that ΩX

t is equivalent to the employment, and thus expenditure
share, as long as the distribution of ∆it is equivalent across both groups. Otherwise, and
assuming a common level of friction, the weight is larger than the relative employment if the
variation in R&D wedges is larger.

We can leverage these insights together with some additional assumptions to understand
the implications of only observing a subset of firms. First, it follows immediately that ΞO

t is
an unbiased estimator for Ξ if we assume that the distributions are comparable across un-
observed and observed firms. Second, the bias in the evolution of estimated Ξt depends on
whether we believe that the unobserved firms are subject to similar trends or not. For exam-
ple, the estimates are going to be exaggerated if the distribution is constant for unobserved
firms or moving in the opposite direction.

In practice, selection into the sample is well understood along one dimension: Firms in
Compustat that patent heavily are larger. Thus, the “unobserved” firms here are mostly
smaller firms. It is, thus, tempting to investigate size heterogeneity within the sample to
get a sense for whether a heavier skew towards smaller firms would impact any conclusions
about the level and evolution of R&D efficiency.

Following this logic, I investigate size heterogeneity by splitting the sample along the
median R&D expenditure within a given year. Figure D.3 reports the annual estimates.
Two findings emerge immediately. First, R&D Allocative Efficiency, and thus misallocation,
is worse among firms with low R&D expenditure. This finding is well aligned with the
common perception that such firms are subject to, e.g., tighter credit constraints. Second,
R&D Allocative Efficiency declines faster for low R&D expenditure firms. While the gap
between high and low R&D firms is modest in the early sample, it opens up significantly post
2000. Thus, if we were to put more emphasis on smaller firms, aggregate R&D Allocative
Efficiency would be lower and declining faster, which suggest that the baseline estimates are
conservative.
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Figure D.3: R&D Efficiency over Time
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Notes: Figure reports annual estimates for R&D Allocative Efficiency Ξt − 1. Baseline
estimates assumes that R&D wedges are independent from impact-value factors. Ad-
justed values estimate the adjustment factor over a 10-year rolling window. The shaded
area covers the 90% confidence interval calculated using a bootstrapping procedure.

E Model Extensions
Specialization of R&D inputs. Workers might not be perfectly substitutable across
firms and vice versa (Card et al., 2018). Such forces can be incorporated in the model by
augmenting the R&D resource constraint to

Lt =

(∫ 1

0

ℓ1+ξ
it · di

) 1
1+ξ

, (E.1)

where ξ > 0 captures increasing marginal costs of R&D inputs to a given firm. Resultingly,
firms’ wages are potentially heterogeneous and take the form Wit = Wt · ℓξit, where Wt is a
common factor clearing the labor market. Firms’ first-order conditions are given by

∂zit
∂ℓit

∣∣∣
ℓit=ℓ∗it

· Vit = (1 + ∆it) ·Wt · ℓξit. (E.2)

Proposition 4 highlights that the main results carry over to this alternative setup, how-
ever, the effective scale elasticity is lower. Resultingly, frictions tend to be less costly for
larger ξ as reallocation of resources becomes less beneficial in a world with specialized inputs.

Proposition 4. Under equations (2), (E.1), (E.2), and (5), we can express the economic
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growth rate in a Competitive Growth Equilibrium as the product of three terms:

gt =
Lγ
t

Aϕ
t

·
(∫ 1

0

(θit · ζit)
1

1−γ̃ di

)1−γ̃

︸ ︷︷ ︸
= Frontier Growth Rate gFt

·
(∫ 1

0

ωit · ζ̃
1

1−γ̃

it di

)γ̃−1

︸ ︷︷ ︸
≡ Policy Opportunity Λt

·
∫ 1

0
ωit · ζ̃it · (1 + ∆it)

− γ̃
1−γ̃ di(∫ 1

0
ωit · (1 + ∆it)

− 1
1−γ̃ di

)γ̃
︸ ︷︷ ︸

≡ R&D Efficiency Ξt

,

(E.3)

where ζ̃it = ζit/
(∫ 1

0
ωit · ζitdi

)
and ωit = θ

1
1−γ̃

it /

(∫ 1

0
θ

1
1−γ̃

it di

)
are the normalized impact-value

factor and an R&D productivity weight, respectively, and γ̃ ≡ γ
1+ξ

is the adjusted scale
elasticity.

Proof. R&D input demand is given by

ℓit =

(
θit · γ

(1 + ∆it) ·Wt

) 1
1−γ+ξ

.

We can then solve for the growth rate using the R&D input demand and supply con-
straint:

gt =
Lγ
t

Aϕ
·
∫ 1

0
ζit · θ

1+ξ
1−γ+ξ

it · (1 + ∆it)
− γ

1−γ+ξ · di(∫ 1

0
θ

1+ξ
1−γ+ξ

it · (1 + ∆it)
− 1+ξ

1−γ+ξ · di
) γ

1+ξ

.

Defining γ̃ = γ
1+ξ

yields the formulae in the proposition.

Note that the unit cost elasticity of R&D identifies γ̃ in this setup. Thus, this extension
does not necessarily change the quantitative implications as long as γ is calibrated to match
the unit cost elasticity in the baseline model.
Multiple R&D lines. Consider an alternative version of the model with multiple R&D
lines per firm. I will index a firm by i ∈ I and a R&D line by j ∈ Ji. The production
function is given by

zij = φij · ℓγij. (E.4)

Firms’ first order conditions for R&D inputs at the R&D line level are

γℓ1−γ
ij · θij = (1 + ∆ij)W. (E.5)

We can solve for the R&D wage as

W

γ
= L−(1−γ)

∫
I

(∑
j∈J⟩

(θij/(1 + ∆ij))
1

1−γ

)
di

1−γ

. (E.6)
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The economic growth rate is then

g =

∫ 1

0

(∑
j∈Ji

ζij · zij · Vij

)
· di = Lγ

Aϕ
t

·

∫ 1

0

(∑
j∈Ji

ζij · θ
1

1−γ

ij · (1 + ∆ij)
− γ

1−γ

)
· di(∫ 1

0

(∑
j∈Ji

θ
1

1−γ

ij · (1 + ∆ij)
− 1

1−γ

)
· di
)γ . (E.7)

Next, consider the inputs at the firm level, measured as

1 + ∆i =

∑
j∈Ji

θij · ℓγij
W ·

∑
j∈Ji

ℓij
=
∑
j∈Ji

ℓij
ℓi

· (1 + ∆ij)

ζi =

∑
j∈Ji

zij · V P
ij∑

j∈Ji
zij · Vij

=
∑
j∈Ji

θij · ℓγij∑
j∈Ji

θij · ℓγij
· ζij

θi = (1 + ∆i) · W̃ γ · (W̃ · ℓi)1−γ

(E.8)

Some algebra confirms the familiar growth rate formula

g =
Lγ

Aϕ
·
∫ 1

0
ζi · θ

1
1−γ

i · (1 + ∆i)
− γ

1−γ · di(∫ 1

0
θ

1
1−γ

i · (1 + ∆i)
− 1

1−γ · di
)γ . (E.9)

Thus, the growth rate abstracting from the product-line level heterogeneity recovers the
growth rate under full heterogeneity under the proposed measurement approach.
Abundant resources. Suppose aggregate supply of Lt responds to productivity adjusted
wage Wt such that

Lt = L̄t ·
(
Wt

Yt

) ξ
1−γ

, (E.10)

where L̄t is given exogenously and ξ/(1− γ) is the aggregate supply elasticity. Also, let L∗
t

be the supply in absence of frictions, i.e., when the R&D wage is at its frictionless level.

Proposition 5. Under equations (2)-(5) and (E.10), we can express the economic growth
rate in a Competitive Growth Equilibrium using the sample decomposition as in Proposition
1 with two adjustments. First, the frontier growth rate gFt reflects the frictionless R&D input
supply,

gFt =
L∗
t
γ

Aϕ
t

·
(∫ 1

0

(θit · ζit)
1

1−γ di

)1−γ

, (E.11)
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and, second, R&D efficiency also reflects the potential effect on labor supply

Ξt =

∫ 1

0
ωit · ζ̃it · (1 + ∆it)

− γ
1−γ di(∫ 1

0
ωit · (1 + ∆it)

− 1
1−γ di

)γ ·
(∫ 1

0

ωit · (1 + ∆it)
− 1

1−γ · di
) ξ·γ

1+ξ

. (E.12)

Note that the supply elasticity only appears in the second term, which depends on the
productivity-weighted average level of frictions. Any change in frictions or policy that keeps
constant this average thus has the same effect on growth as in the case of ξ = 0.

Proof. The proof follows from the same steps as in the derivation of the baseline results.

Note, however, that the adjusted formulas tend to be less sensitive to variation in R&D
returns. Intuitively, with flexible labor supply, excess demand for R&D workers tends to
lead to more aggregate R&D employment instead of crowding-out demand from other firms.

Proposition 6. Suppose that R&D returns, impact-value factors, and R&D productivity are
jointly log-normally distributed and that R&D returns and impact-value factors are either
positively or uncorrelated. Then, R&D efficiency is declining in the dispersion of log-R&D
wedges as long as the supply of R&D inputs is sufficiently inflexible: 1

γ
> ξ

1−γ
. Furthermore,

holding constant the average level of R&D wedges, the Impact of R&D wedges is declining in
the dispersion of R&D wedges as long as γ ≥ ξ

1+2ξ
.

Proof. Solving for Ξt under log-normal distribution and setting µ∆ = 0, we have

lnΞt = −1

2
· γ

(1− γ)2
·
(
γ − 1

1 + ξ

)
· σ2

∆.

It is straight-forward to show that this term is decreasing in σ2
∆ if and only if 1

γ
> ξ

1−γ
.

Alternatively, setting µ∆ = −1
2
σ2
∆ to maintain the average level of 1 + ∆it, we have

lnΞt = −1

2
·
(

γ

1− γ
− ξ

1 + ξ

)
· σ2

∆,

which is declining in σ2
∆ as long as the condition in the proposition holds.

Importantly, aggregate estimates suggest that ξ
1−γ

is around 0.5 and, thus, satisfies the
more stringent constraint given that γ = 0.5 (Chetty et al., 2012).
Free Entry. Suppose that the mass Mt of innovative firms is potentially responsive to
changes in the economic environment and letM∗

t be the mass of firms in absence of frictions.
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The equilibrium wage satisfies

Wt

γ
=

(
Mt

Lt

)1−γ (∫ 1

0

θ
1

1−γ

it · (1 + ∆it)
− 1

1−γ di

)1−γ

. (E.13)

I assume that all firm-types are permanent and that frictions ∆it show up directly in the
firm’s cost function. The current period profits of an innovative firm are given by

πit ≡ max {θit · ℓγit −Wt · ℓit · (1 + ∆it)}

= (1− γ) · θ
1

1−γ

it · ((Wt/γ) · (1 + ∆it))
− γ

1−γ .

Assuming a constant discount factor and permanent types implies that current and expected,
discounted value are proportional by factor R/(R − 1), where R is the discount rate. The
expected value of an R&D firm is then given by

Vt = Et

[
R

R− 1
· πit

]
=
R · (1− γ)

R− 1
·
(
Lt

Mt

)γ

·
(∫ 1

0

θ
1

1−γ

it · di
)1−γ

·
∫ 1

0
ωit · (1 + ∆it)

− γ
1−γ · di(∫ 1

0
ωit · (1 + ∆it)

− 1
1−γ · di

)γ
Assuming that entrants draw values from a random firm in the existing distribution,

entrants receive expected value Vt and in turn need to pay entry cost. I consider two
alternatives. In the first case, entry costs are in units of the output and given by ϕE

t · R·(1−γ)
R−1

·

M
γ
φ

t . The free entry condition is

Vt = ϕE
t · R · (1− γ)

R− 1
·M

γ
φ

t

Using the formula for value of entry, we can then solve for equilibrium entry:

Mt

M∗
t

=

 ∫ 1

0
ωit(1 + ∆it)

− γ
1−γ di(∫ 1

0
ωit(1 + ∆it)

− 1
1−γ di

)γ
 1

γ
φ

1+φ

s.t. M∗
t =

(
Lt

ϕE
t

1
γ

(∫ 1

0

θ
1

1−γ

it di

) 1−γ
γ

) φ
1+φ

. (E.14)

Note that φ → 0 recovers the baseline model with Mt = 1, while φ → 0 yields a standard
free entry condition. In general, larger values of φ make the mass of firms more responsive
to the economic environment.

In the second case, I assume that entry cost are linked to the R&D wage and given by
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ϕE
t · (1− γ) ·M

1
φ

t · Wt

γ
. The free entry condition is

Vt = ϕE
t · R · (1− γ)

R− 1
·M

1
φ

t · Wt

γ

Using the formula for value of entry, we can then solve for equilibrium entry:

Mt

M∗
t

=

 ∫ 1

0
ωit(1 + ∆it)

− γ
1−γ di(∫ 1

0
ωit(1 + ∆it)

− 1
1−γ di

)γ ·
(∫ 1

0

ωit(1 + ∆it)
− 1

1−γ di

)γ−1


φ
1+φ

s.t. M∗
t =

(
Lt

ϕE
t

) φ
1+φ

.

(E.15)

Proposition 7. Under equations (2)-(5) and (E.14) or (E.15), we can express the economic
growth rate in a Competitive Growth Equilibrium using the sample decomposition as in
Proposition 1 with two adjustments. First, the frontier growth rate gFt reflects frictionless
entry,

gFt =
Lγ
t

Aϕ
t

·M∗
t
1−γ ·

(∫ 1

0

(θit · ζit)
1

1−γ di

)1−γ

, (E.16)

and, second, R&D efficiency also reflects potential effects on entry

Ξt =

∫ 1

0
ωit · ζ̃it · (1 + ∆it)

− γ
1−γ di(∫ 1

0
ωit · (1 + ∆it)

− 1
1−γ di

)γ · Mt

M∗
t

, (E.17)

where Mt/M
∗
t is given by the respective formulas.

Proof. The proof follows the same steps as before apart from taking the number of firms as
a variable and using the entry condition.

Private frictions now have an additional detrimental effect on growth through the number
of firms. Notably, the entry-effect does not depend on the impact-value factor, which is
irrelevant to firms’ decision to enter or exit the economy. It is straight-forward to show that
the impact of frictions is always worse in the economy with free entry holding constant the
average level of R&D returns.

F Mechanisms Driving R&D Wedges
In this section I highlight mechanisms captured by in R&D returns and impact-value factors.
I rely on a two-period growth model for simplicity.
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F.1 Baseline Model
Setup. The final good producer creates consumption good Yt by combining inputs yjt from
a unit mass of product lines according to:

lnYt =
∫ 1

0

ln yjt · dj.

Each input is supplied by a single monopolist with constant marginal ψ/Ajt. The monop-
olist is free to chose any price pjt, however, there is a competitive fringe of firm with constant
unit costs λjt · (ψ/Ajt) that limit the monopolists’ price setting power. Consequently, the
monopolist sets limit price equal to the marginal costs of the competitive fringe and earns
profits

πjt = Yt · (1− λ−1
jt ).

There is a unit mass of innovative firms at time 0, which may hire inventors ℓi at wage
W to produce an invention at time 1 with probability zi:

zi = φi · ℓγi .

An invention improves technology in a random product line by λi such that Aj1 = λi ·Aj0 in a
product line with a successful invention. The competitive fringe then absorbs the knowledge
of the previous monopolist, such that its unit cost gap to the monopolist is λi as well.
Resultingly, the innovation yields profits πi in period 1, which firms discount at rate R. The
value of innovation to the firm is thus given by Vi = πi/R and its optimization problem

max
ℓi

{Vi · zi −W · ℓi}

There is a fixed number of research workers, whose labor market clearing condition
determines the R&D wage in equilibrium:

L =

∫ 1

0

ℓi · di.

Finally, I define the productivity index At such that lnAt =
∫ 1

0
lnAjt · dj. Consequently,

its growth rate is given by

g = ln(A1/A0) ≈
∫ 1

0

(λi − 1) · zi · di,
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where the approximation relies on lnλi ≈ λi − 1.
The planner maximizes economic growth subject to the same technological constraints

as firms:
g∗ = max

∫ 1

0

zi · (λi − 1) · di s.t. L =

∫ 1

0

ℓi · di.

R&D returns and impact-value factors. It is straight-forward to show that in this
setup R&D returns are equalized across firms:

Vi · zi
W · ℓi

=
1

γ
and ℓi =

(
Vi · φi

(W/γ)

) 1
1−γ

.

Furthermore, one can show that this allocation is also the solution to

g = max
∫ 1

0

zi · Vi · di s.t. L =

∫ 1

0

ℓi · di.

Defining ζi ≡ (λi − 1)/Vi, we can thus rearrange the planner problem as

g∗ = max
∫ 1

0

zi · Vi · ζi · di s.t. L =

∫ 1

0

ℓi · di. (F.1)

From the formulation of Vi it then follows immediately that planner and private allocation
coincide iff ζi is a constant across firms.

F.2 Mechanisms for R&D Return Dispersion
R&D Subsidies or Taxes. Suppose firms face R&D subsidies τi on their gross R&D
expenditure. The firm problem is then given by

max
ℓi

{Vi · zi − (1− τi) ·W · ℓi} .

Consequently, firms’ R&D returns directly reflect differences in subsidy rates:

Vi · zi
W · ℓi

=
1

γ
· (1− τi) and ℓi =

(
Vi · φi

(W/γ) · (1− τi)

) 1
1−γ

.

Capacity constraints. Suppose firms face exogenous capacity constraint ℓi ≤ ℓ̄i. The firm
problem is then given by

max
ℓi

{
Vi · zi −W · ℓi s.t. ℓi ≤ ℓ̄i

}
.
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Consequently, firms’ R&D returns directly reflect the tightness of the capacity constraint λ̃i:

Vi · zi
W · ℓi

=
1

γ
· (1 + λ̃i) and ℓi =

(
Vi · φi

(W/γ) · (1 + λ̃i)

) 1
1−γ

.

Discount Rates. Suppose firms have heterogeneous discount rates Ri reflecting e.g. risk
or financial constraints, which are not observed in the data. Let Vi = πi/R with R = E[Ri],
then the firm problem is given by

max
ℓi

{(R/Ri) · Vi · zi −W · ℓi} .

Consequently, firms’ measured R&D returns directly reflect these differences:

Vi · zi
W · ℓi

=
1

γ
· Ri

R
and ℓi =

(
Vi · (R/Ri) · φi

(W/γ)

) 1
1−γ

.

Adjustment costs. Suppose firms face exogenous adjustment costs ϕ ·W · (ℓi − ℓ̄i)
2. The

firm problem is then given by

max
ℓi

{
Vi · zi −W · ℓi − ϕ ·W · (ℓi − ℓ̄i)

2
}
.

Consequently, firms’ R&D returns directly reflect the adjustment costs:

Vi · zi
W · ℓi

=
1

γ
· (1 + 2 · ϕ · (ℓi − ℓ̄i)) and Vi · zi

W · ℓi + ϕ ·W · (ℓi − ℓ̄i)2
=

1

γ
· 1 + 2 · ϕ · (ℓi − ℓ̄i)

1 + ϕ (ℓi−ℓ̄i)2

ℓi

Firms with high R&D relative to their reference point have higher returns.
Monopsony Power. Suppose R&D labor is specialized across fields. R&D labor is perfectly
mobile across firms within a field, but not across fields, such that the labor market clearing
condition is given by

L =

∫ 1

0

ℓi ·

(
1
Ni

∑
i∈Ni

ℓj

L

)ξ

· di, (F.2)

where Ni is the number of firms in a given field.
Resultingly, wages may differ across fields and are generally increasing in the average

demand for R&D input within a given field:

Wi = W ·

(
1
Ni

∑
j∈Ni

ℓj

L

)ξ

(F.3)
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Firm internalize the impact labor demand on wages and, consequently, their first order
conditions under symmetry (ℓj = ℓi for j ∈ Ni) are given by

γ · θ · ℓγ−1
i =

(
1 +

1

Ni

· ξ
)
·Wi (F.4)

R&D return is given by (1/γ) ·
(
1 + 1

Ni
· ξ
)
with ∆i =

1
Ni

· ξ. Variation in R&D returns
is thus directly linked to the degree of competition in the firm-specific labor market. Firms
with more competition for R&D workers have lower R&D returns and vice versa.

F.3 Mechanisms for Dispersion in Impact-Value Factors
Patent Protection. Suppose that the competitive fringe learns with probability 1 − Pi

about the new technology of a monopolist such that the monopolist is only able to profit
from the innovation with probability Pi. In this case, the private value of the invention is
Vi = Pi · πi/R, while the public value remains λi − 1. Resultingly, variation in Pi induces
variation in ζi.
Exogenous Markup Differences. Suppose that firms differ in their unit cost parameter
ψi due to e.g. technological differences or complementarities across product lines. The profit
of an invention is then given by πi = Y1 · (1− (ψ/ψi) ·λ−1). Resultingly, variation in ψi across
firms yields variation in the private value a firm creates from innovation without changing
the growth impact λi − 1, which induces variation in impact-value factor ζi.
Endogenous Markup Differences. Suppose that firms differ in their step-size λi, then
ζi ∝ λi such that variation in step-sizes yields variation in impact-value factor. Intuitively,
the growth gains of λi are linear, while the profit gains are concave, such that firms with
high quality innovation under-invest in R&D.
Frictions in the Product Market. It is straight-forward to see that any frictions in the
product market that affect πi without changing the growth impact of an invention naturally
yields variation in ζi as well. Firms with artificially low profits under-provide innovation.
Knowledge externalities. More general knowledge externalities can also variation in the
impact-value factor. For example, let the growth rate be

g =

(∫ 1

0

φi · zi · (ζi · Vi) · di
)ϕ

·
∫ 1

0

zi · (ζi · Vi) · di, (F.5)

where the first term on the right-hand side captures simultaneous knowledge externalities.
Here, the marginal benefit to R&D as perceived by the firm for high φi firms is generally
too low compared to the social planner perspective if ϕ > 0 and vice versa.
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G Measurement Error
This section considers adjustments for two sources of measurement error in R&D returns:
Uncertainty across R&D projects within a firm and firm-level uncertainty in R&D outcomes.
The former arises when firms conduct R&D projects whose ex-post value is uncertain, e.g.,
because some inventions turn out more valuable than others. The latter arises when there
are firm-level shocks to the value of R&D outputs after investments are made, e.g., general
taste shocks for the firm’s products. I propose a bootstrapping procedure to address the
former and a structural GMM approach to address the latter. Finally, I also consider the
adjustment procedure proposed in Bils et al. (2021).

G.1 Bootstrapping
Suppose the value of individual research projects, as captured by patents, is ex-ante uncer-
tain. Ex-post variation in valuations then might give rise to dispersion in measured R&D
returns even with equalized ex-ante expectations. I propose a simple bootstrapping proce-
dure to estimate the variability in R&D returns induced by this variation.

I establish the realized portfolio of patent valuations for each firm × 5-year interval in
which the firm has at least 50 patents. For each of 1000 bootstrap samples I then implement
the following procedure:

1. For each firm and 5-year window in which the firm has at least 50 patents:

(a) From the realized portfolio for the firm-period, draw with replacement an alter-
native portfolio with the same number of patents.

(b) Calculate the return gap as the ratio as the log of valuations in the alternative
portfolio divided by the valuation of the true portfolio.

2. Calculate the within-period standard deviation of return gaps for the simulated data.

One way to interpret this approach is that the realized patent portfolio is a good ap-
proximation for the true uncertainty faced by the firm around its innovation outcomes. The
procedure ignores all variation coming from shifts in the level of expected patent valuation
and instead considers the dispersion conditional on the average value only. As a result, the
procedure will overstate the associated measurement error if firms are aware that certain
project are low or high expected value within their research portfolio. On the other hand,
the procedure ignores all uncertainty around the number of realized patents.
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Table G.1 reports the estimates. I find an average standard deviation of the return
gap of around 0.06, which suggests that uncertainty around patent valuation might have
contributed (0.06/0.93)2 ≈ 0.4% of the variance of R&D returns. Uncertainty across patents
thus, does not appear to have a large contribution of dispersion therein. Note that this is not
necessarily surprising, since averages should converge to the true mean with a sufficiently
large number of independent observations by the law of large numbers.

Table G.1: Bootstrapping Estimates for Measurement Error

Measure Period
1975-2014 1975-1990 2000-2014

Standard deviation 0.059 0.056 0.058
[0.051,0.069] [0.049,0.066] [0.051,0.069]

Adjustment factor 0.998 0.997 0.998
[0.997,0.998] [0.996,0.998] [0.997,0.999]

Notes: Table reports bootstrapping estimates for noise in R&D returns.
See text for details.

G.2 GMM Approach
The bootstrapping approach can address variation across projects, however, it cannot adjust
for correlated shocks to the firms’ patent valuations or citations, which could arise, e.g.,
due to the expectation-realization gap, correlated errors in patent valuation estimation, or
misreporting of R&D expenditure.21 I propose to investigate the importance of such variation
using a structural decomposition of the variation in R&D returns.

Consider a stationary, AR(1) process {yit}:

yit = (1− ρ)µi + ρyit−1 + εit with εit
iid∼ N(0, σ2

ε) and µi ∼ N(0, σ2
µ). (G.1)

The econometrician observes the process with i.i.d. normal measurement error:

ỹit ≡ yit + νit νit
iid∼ N(0, σ2

ν). (G.2)
21R&D expenditure is expensed in US GAAP accounting, giving firms an incentive to fully report it to

reduce their tax liability. Terry et al. (2022) argue that managers might still misreport to hit short-run
earnings targets or smooth earnings.
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Lemma 2. Define ∆ỹit ≡ ỹit − ỹit−1, then under ρ ∈ (0, 1), we have

m1 ≡ Cov(ỹi,t,∆ỹit) =
1

1 + ρ
σ2
ε + σ2

ν

m2 ≡ Cov(ỹi,t,∆ỹit−1) =
ρ

1 + ρ
σ2
ε

m3 ≡ Cov(ỹi,t,∆ỹit−2) =
ρ2

1 + ρ
σ2
ε

m4 ≡ Cov(ỹi,t, ỹit−1) = σ2
µ +

ρ

1− ρ2
σ2
ε .

Proof. The results follow immediately from the assumptions.

Proposition 8. If ρ ∈ (0, 1), we can solve for {ρ, σµ, σε, σν} using the population auto-
covariance structure of ỹit and ∆ỹit ≡ yit − yit−1:

β ≡


ρ

σ2
ε

σ2
µ

σ2
ν

 =


m3

m2
(m2)2

m3
+m2

m4 − (m2)2

m2−m3

m1 − (m2)2

m3


Let Ω be the covariance matrix of m and m̂ the sample moments , then

β̂ ∼ N(β,Σ) and a feasible estimator is Σ̂ =

(
∂β̂

∂m

)′

Ω̂

(
∂β̂

∂m

)
,

where ∂β/∂m is evaluated at m̂ and given by

∂β

∂m
=


0 0 0 1

− m3

(m2)2
2m2

m3
+ 1 m2

(
m2−2m3

(m2−m3)2

)
−2m2

m3

1
m2

−
(

m2

m3

)2
−
(

m2

m2−m3

)2
−
(

m2

m3

)2
0 0 1 0

 .

Proof. The first part follows by rearranging the moments expressions. The second part
follows from the Law of Large Numbers for the moment vector and the Delta method.

I report estimates for two measures of R&D returns in Table G.2. I find no contribution
of transitory shocks to the overall variation for my baseline measure of R&D returns in
column 1, however, the estimates are imprecise. Using sales growth to measure R&D output
yields a contribution of 22%.
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Table G.2: GMM Parameter Estimates for AR(1)
with Noise

Parameter Valuations/ ∆Sales/
R&D R&D

ρ 0.626∗∗∗ 0.787∗∗∗

(0.083) (0.149)
σ2
ϵ 0.628∗∗∗ 0.404∗∗∗

(0.085) (0.092)
σ2
µ 0.197 −0.086

(0.140) (0.726)
σ2
ν 0.007 0.509∗∗∗

(0.090) (0.091)
Observations 8,014 7,653

Adjustment factor 0.997 0.810

Notes: Table reports parameters estimates for AR(1) with
Noise in logs using a General Methods of Moments ap-
proach. See text for details.

G.3 Bils et al. (2021) Adjustment
The previous two adjustments primarily deal with log-additive measurement error. Bils et
al. (2021) instead propose a methodology for additive measurement error. Applying their
approach to this context suggest the following procedure to account for additive measurement
error:

1. Define deciles k of the R&D returns distribution and estimate:

∆ lnR&D Outputit = αk(i) +
∑

k=1,10

βk ·∆ lnR&D Expenditureit · I{i ∈ k}+ ϵit, (G.3)

where αk(i) is a decile fixed effect and I{i ∈ k} an indicator for whether firm i belongs
to decile k.

2. Create adjusted R&D returns as

ln ̂R&D Returnit = lnR&D Returnit + ln β̂k(i) + σβ · ϵit, (G.4)

where ϵit ∼ N(0, 1) and

σ2
β = −σ

(
lnR&D Returnit, ln β̂k(i)

)
− σ2

(
ln βk(i)

)
. (G.5)
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Implementation for full sample. I implement this approach for the full sample and
report estimates in Table G.3. As in Bils et al. (2021), I find that the estimates decline with
the decile while being broadly centered around 1. Following step 2, I find that the standard
deviation of adjusted R&D returns is 0.80 compared to the unadjusted value of 0.93.

Table G.3: Estimates from Bils et al. (2021) Specification

Decile 1 2 3 4 5 6 7 8 9 10

Estimate 1.477 1.112 1.154 1.025 1.088 0.919 0.861 0.834 0.803 0.524
Std. Err. (0.12) (0.14) (0.09) (0.08) (0.09) (0.10) (0.11) (0.08) (0.08) (0.07)

Note: Coefficients estimates for full sample for specification (G.3). Regression controls for NAICS3× Year fixed effects and
standard errors are clustered at the NAICS6 level.

Implementation for annual estimates. I implement their methodology for the mea-
surement of alternative R&D wedges to construct alternative estimates for R&D Allocative
efficiency. I estimate coefficients over time using 15-year windows centered on the main
window when possible to ensure a reasonable sample size. For early and late observations I
use the first and last available 15-year window, respectively.
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